Scalable computational tools for reverse engineering neural circuits from histolo
histolo 用于逆向工程神经电路的可扩展计算工具
基本信息
- 批准号:7804320
- 负责人:
- 金额:$ 24.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-12-07 至 2011-11-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArchitectureAutomationAxonBackBiomedical EngineeringCellsClientCollaborationsCommunitiesComplexComputer softwareConflict (Psychology)CustomDataData SetDatabasesDoctor of PhilosophyDropsElectronsEngineeringFeedbackFundingFutureGoalsGolgi ApparatusGrowthHistologyHuman ResourcesImageImageryIndividualJavaLabelLawsLeadLibrariesManualsMapsMetadataMethodsMicroscopeMicrotomyModelingMorphologyNamesNervous system structureNeuronsNeuropilNeurosciencesOrganismPhaseProcessPropertyProtocols documentationRelative (related person)Request for ApplicationsResearchResearch DesignResearch InfrastructureResearch PersonnelResolutionRunningScanningSeedsSkeletonSliceSmall Business Innovation Research GrantStagingStaining methodStainsSupport SystemSynapsesSystemTechniquesTestingTissue SampleTissuesTreesUniversitiesVisualWorkcluster computingcomputer infrastructurecomputerized toolsdesignfile formatflexibilitygraphical user interfaceimage processinginterestmannanometerneural circuitopen sourceparallel processingprogramsprototypepublic health relevancerelating to nervous systemrepositoryresearch and developmentskeletalsoftware developmenttool
项目摘要
DESCRIPTION (provided by applicant): We propose to develop the computational infrastructure necessary for future large-scale reverse engineering of cortical circuits. Neuroscience researchers are using confocal and electron micrograph (EM) techniques to scan neural tissue at high resolution. Their goal is to capture a detailed map of all neurons and synapses within the nervous system of an organism. Through automation, it is now possible to acquire petabyte size volumes. However, there is no way to currently analyze such large datasets. We will develop an open-source system that supports remote visualization and analysis of arbitrary sized volumes. Our system will be named "Open SSECRETT" and enable a collaborative effort to develop automatic segmentation of neurons and synaptic connections. The proposed system will be architected around remote data access so that geographically diverse research groups can collaborate on the enormous task of segmenting neurons from volumes in the database. Custom clients will implement various segmentation algorithms and the results will be put back in a central database. This will allow the algorithms and their results to be shared and compared. We will also develop standard clients that will allow universal access to view and explore the immense data.
PUBLIC HEALTH RELEVANCE: Since the discovery of Golgi staining, tracing cells has revealed how individual neurons form connections in neural tissue[1]. Unfortunately, early techniques could only reveal complex neural processes by imaging a few select neurons. High-resolution volumes, generated by electron micrographs, allow all cells in a block of tissue to be traced. However, since axons make connections across large distances, it is necessary to image large tissue blocks in order to get a complete circuit. Automated sectioning and imaging are now capable of generating such volumes, but no software currently available can analyze the resulting data. Scanning a cubic centimeter of tissue at nanometer EM scale (figure 1) would produce hundreds of petabytes of data! It is a challenge to even view such large data, let alone segment circuits of neurons from it. We propose developing a scalable software database that manages exabyte sized volumes. It will support a community of researchers who are working on algorithms to automatically segment neurons and analyze resulting circuits.
描述(由申请人提供):我们建议开发必要的计算基础设施,为未来的大规模逆向工程的皮层电路。神经科学研究人员正在使用共聚焦和电子显微镜(EM)技术以高分辨率扫描神经组织。他们的目标是捕获生物体神经系统内所有神经元和突触的详细地图。通过自动化,现在可以获得PB大小的卷。然而,目前还没有办法分析如此大的数据集。我们将开发一个开源系统,支持远程可视化和分析任意大小的体积。我们的系统将被命名为“开放SSECRETT”,并使合作努力,以开发神经元和突触连接的自动分割。拟议的系统将围绕远程数据访问进行架构设计,以便地理位置不同的研究小组可以合作完成从数据库中分割神经元的巨大任务。自定义客户端将实现各种分割算法,结果将被放回中央数据库。这将允许算法及其结果被共享和比较。我们还将开发标准客户端,允许普遍访问查看和探索庞大的数据。
公共卫生关系:自从发现高尔基染色以来,追踪细胞已经揭示了单个神经元如何在神经组织中形成连接[1]。不幸的是,早期的技术只能通过对少数选定的神经元进行成像来揭示复杂的神经过程。高分辨率体积,由电子显微照片产生,允许在一块组织中的所有细胞被跟踪。然而,由于轴突在很长的距离上进行连接,因此有必要对大的组织块进行成像以获得完整的回路。自动切片和成像现在能够生成这样的体积,但目前没有软件可以分析得到的数据。以纳米EM尺度扫描一立方厘米的组织(图1)将产生数百PB的数据!这是一个挑战,甚至查看如此大的数据,更不用说段神经元电路从它。我们建议开发一个可扩展的软件数据库,管理EB大小的卷。它将支持一个研究人员社区,他们正在研究自动分割神经元并分析产生的电路的算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTOPHER CHARLES LAW其他文献
CHRISTOPHER CHARLES LAW的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTOPHER CHARLES LAW', 18)}}的其他基金
Scalable Software for Reverse Engineering Neural Circuits from Histology
用于组织学逆向工程神经电路的可扩展软件
- 批准号:
8314294 - 财政年份:2009
- 资助金额:
$ 24.88万 - 项目类别:
Scalable computational tools for reverse engineering neural circuits from histolo
histolo 用于逆向工程神经电路的可扩展计算工具
- 批准号:
7997180 - 财政年份:2009
- 资助金额:
$ 24.88万 - 项目类别:
Scalable Software for Reverse Engineering Neural Circuits from Histology
用于组织学逆向工程神经电路的可扩展软件
- 批准号:
8465278 - 财政年份:2009
- 资助金额:
$ 24.88万 - 项目类别:
相似海外基金
Solution Architecture R&D of Online Safety Automation
解决方案架构R
- 批准号:
86073 - 财政年份:2020
- 资助金额:
$ 24.88万 - 项目类别:
Collaborative R&D
Convergence Accelerator Phase I (RAISE): Preparing the Future Workforce of Architecture, Engineering, and Construction for Robotic Automation Processes
融合加速器第一阶段 (RAISE):为机器人自动化流程的未来架构、工程和施工人员做好准备
- 批准号:
1937019 - 财政年份:2019
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
Architecture and Automation Techniques for Resilient Computer Systems
弹性计算机系统的体系结构和自动化技术
- 批准号:
418639-2012 - 财政年份:2017
- 资助金额:
$ 24.88万 - 项目类别:
Discovery Grants Program - Individual
Architecture and Automation Techniques for Resilient Computer Systems
弹性计算机系统的体系结构和自动化技术
- 批准号:
418639-2012 - 财政年份:2015
- 资助金额:
$ 24.88万 - 项目类别:
Discovery Grants Program - Individual
Architecture and Automation Techniques for Resilient Computer Systems
弹性计算机系统的体系结构和自动化技术
- 批准号:
418639-2012 - 财政年份:2014
- 资助金额:
$ 24.88万 - 项目类别:
Discovery Grants Program - Individual
Architecture and Automation Techniques for Resilient Computer Systems
弹性计算机系统的体系结构和自动化技术
- 批准号:
418639-2012 - 财政年份:2013
- 资助金额:
$ 24.88万 - 项目类别:
Discovery Grants Program - Individual
Architecture and Automation Techniques for Resilient Computer Systems
弹性计算机系统的体系结构和自动化技术
- 批准号:
418639-2012 - 财政年份:2012
- 资助金额:
$ 24.88万 - 项目类别:
Discovery Grants Program - Individual
ADAMS: Architecture and Design Automation for 3D Multi-core Systems
ADAMS:3D 多核系统的架构和设计自动化
- 批准号:
0903432 - 财政年份:2009
- 资助金额:
$ 24.88万 - 项目类别:
Standard Grant
Design Automation for Memory Access Free Architecture
免内存访问架构的设计自动化
- 批准号:
20500057 - 财政年份:2008
- 资助金额:
$ 24.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synthesis, Evaluation, and Automation of Digital Systems Architecture
数字系统架构的综合、评估和自动化
- 批准号:
7709730 - 财政年份:1977
- 资助金额:
$ 24.88万 - 项目类别:
Continuing Grant