Convergence Accelerator Phase I (RAISE): Preparing the Future Workforce of Architecture, Engineering, and Construction for Robotic Automation Processes
融合加速器第一阶段 (RAISE):为机器人自动化流程的未来架构、工程和施工人员做好准备
基本信息
- 批准号:1937019
- 负责人:
- 金额:$ 97.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The NSF Convergence Accelerator supports team-based, multidisciplinary efforts that address challenges of national importance and show potential for deliverables in the near future. The broader impact/potential benefits of this Convergence Accelerator Phase I project will address a crucial national problem by preparing the nation's workers and businesses in the Architecture, Engineering, and Construction (AEC) industries for an increasingly automated future workplace. This convergent research and development project involves researchers in architecture, construction, engineering, computer science, STEM education and economic development, as well as industry collaborators from the robotics, architecture, engineering, construction and software industries. Its Phase 1 deliverables will benefit businesses, workers and professionals in the AEC industry cluster, as well as regional and national economic development policy. Phase 1 provides the platform for critical solutions: maximizing employment opportunity, minimizing job displacement, and improving national economic competitiveness in the AEC industries. Improving AEC industry performance also promises solutions leading to a more energy efficient and sustainable built environment.This Convergence Accelerator Phase I project will contribute to research and application of Artificial Intelligence (AI) and immersive virtual environments in education as well as examining economic impacts of automation technology adoption in the AEC industries. The rapid adoption of AI and automation promises new employment and business opportunities, but will also create job displacement and business disruption. The Project's Phase 1 research objectives are to develop 1) a prototype interactive virtual reality robotics training and educational software package, and 2) a new model to measure the economic impact of automation adoption. Phase 1 will provide a platform for an immersive virtual software to teach new skills, improve process workflows, and increase efficiency in the AEC industries. Integrating advanced technologies including Reinforcement Learning, Computer Vision, Augmented and Virtual Reality, the project will advance methods of remote and on-site training for a large segment of employees in the AEC industries. By applying STEM learning strategies, the project will contribute to understanding how people learn in technology rich environments and bridge the gap between technology advancement and application to practice. The Project's economic analysis will utilize a "bottom-up" approach to estimating the employment impacts resulting from the adoption of AI and robotics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持以团队为基础的多学科努力,以应对国家重要性的挑战,并在不久的将来展示可交付成果的潜力。 这个融合加速器第一阶段项目的更广泛的影响/潜在利益将通过为建筑,工程和建筑(AEC)行业的国家工人和企业做好准备,为日益自动化的未来工作场所解决一个关键的国家问题。这个融合的研究和开发项目涉及建筑,建筑,工程,计算机科学,STEM教育和经济发展的研究人员,以及来自机器人,建筑,工程,建筑和软件行业的行业合作者。其第一阶段的交付成果将使AEC产业集群中的企业、工人和专业人士以及区域和国家经济发展政策受益。 第一阶段为关键解决方案提供了平台:最大限度地增加就业机会,最大限度地减少失业,并提高AEC行业的国家经济竞争力。该融合加速器第一期项目将致力于人工智能(AI)和沉浸式虚拟环境在教育领域的研究和应用,以及研究自动化技术在AEC行业中的应用对经济的影响。人工智能和自动化的快速采用有望带来新的就业和商业机会,但也会造成就业岗位流失和业务中断。该项目第一阶段的研究目标是:1)开发一个交互式虚拟现实机器人培训和教育软件包的原型; 2)开发一个新的模型来衡量自动化采用的经济影响。第一阶段将为沉浸式虚拟软件提供一个平台,以教授新技能,改进流程工作流,并提高AEC行业的效率。该项目整合了强化学习、计算机视觉、增强现实和虚拟现实等先进技术,将为AEC行业的大部分员工提供远程和现场培训方法。通过应用STEM学习策略,该项目将有助于了解人们如何在技术丰富的环境中学习,并弥合技术进步与应用实践之间的差距。该项目的经济分析将采用“自下而上”的方法来估计人工智能和机器人技术的采用所带来的就业影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evolutionary Programming Based Deep Feature and Model Selection for Visual Data Classification
基于进化规划的视觉数据分类深度特征和模型选择
- DOI:10.1109/mipr49039.2020.00020
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Tian, Haiman;Chen, Shu-Ching;Shyu, Mei-Ling
- 通讯作者:Shyu, Mei-Ling
Multi-task Multimodal Learning for Disaster Situation Assessment
- DOI:10.1109/mipr49039.2020.00050
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Tianyi Wang;Yudong Tao;Shu‐Ching Chen;Mei-Ling Shyu
- 通讯作者:Tianyi Wang;Yudong Tao;Shu‐Ching Chen;Mei-Ling Shyu
Work in Progress: Towards an Immersive Robotics Training for the Future of Architecture, Engineering, and Construction Workforce
正在进行的工作:为建筑、工程和建筑劳动力的未来提供沉浸式机器人培训
- DOI:10.1109/edunine48860.2020.9149493
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Bogosian, Biayna;Bobadilla, Leonardo;Alonso, Miguel;Elias, Albert;Perez, Giancarlo;Alhaffar, Hadi;Vassigh, Shahin
- 通讯作者:Vassigh, Shahin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shahin Vassigh其他文献
Biomimetic self-shading walls via 3D-printing for reduced heat gain: Multiscale learning using graph neural networks to predict solar radiation absorption
通过3D打印实现仿生自遮阳墙以减少热量获取:利用图神经网络进行多尺度学习以预测太阳辐射吸收
- DOI:
10.1016/j.buildenv.2025.113048 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:7.600
- 作者:
Hanmo Wang;Zhuyin Lu;Amanda Wojtasiak;Shawn Owyong;Bo Sun;Yu Fang;Shahin Vassigh;Alexander Lin - 通讯作者:
Alexander Lin
Shahin Vassigh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shahin Vassigh', 18)}}的其他基金
Augmented Learning for Environmental Robotics Technologies: A Data-Driven Approach for Sustainable Built Environments
环境机器人技术的增强学习:可持续建筑环境的数据驱动方法
- 批准号:
2315647 - 财政年份:2023
- 资助金额:
$ 97.33万 - 项目类别:
Standard Grant
Collaborative Research: Intelligent Immersive Environments for Learning Robotics
协作研究:学习机器人的智能沉浸式环境
- 批准号:
2202610 - 财政年份:2022
- 资助金额:
$ 97.33万 - 项目类别:
Standard Grant
RAPID: A Platform for Mitigating the Impacts of COVID-19 on the Healthcare System
RAPID:减轻 COVID-19 对医疗保健系统影响的平台
- 批准号:
2029557 - 财政年份:2020
- 资助金额:
$ 97.33万 - 项目类别:
Standard Grant
Collaborative Research: Strategies for Learning: Augmented Reality and Collaborative Problem-Solving for Building Sciences
协作研究:学习策略:增强现实和协作解决建筑科学问题
- 批准号:
1504898 - 财政年份:2015
- 资助金额:
$ 97.33万 - 项目类别:
Standard Grant
相似国自然基金
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
- 批准号:62002350
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Convergence Accelerator Track J Phase 2: Rapid Detection Technologies and Decision-Support Systems for Safe, Equitable Food Systems
融合加速器轨道 J 第 2 阶段:安全、公平食品系统的快速检测技术和决策支持系统
- 批准号:
2344877 - 财政年份:2023
- 资助金额:
$ 97.33万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Dairy NutriSols - Catalyzing technology adoption to promote food and nutrition security
NSF 融合加速器轨道 J 第 2 阶段:乳制品 NutriSols - 促进技术采用,促进食品和营养安全
- 批准号:
2345069 - 财政年份:2023
- 资助金额:
$ 97.33万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Cultivate IQ - Empowering Regional Food Systems
NSF 融合加速器轨道 J 第 2 阶段:培养智商 - 增强区域粮食系统能力
- 批准号:
2345176 - 财政年份:2023
- 资助金额:
$ 97.33万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: AquaSteady - Balancing Soil Moisture, A Seaweed-Based Hydrogel for Sustainable Agriculture
NSF 融合加速器轨道 J 第 2 阶段:AquaSteady - 平衡土壤湿度,一种用于可持续农业的海藻水凝胶
- 批准号:
2345052 - 财政年份:2023
- 资助金额:
$ 97.33万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: CropSmart - a digital twin for making wiser cropping decisions nationwide
NSF 融合加速器轨道 J 第 2 阶段:CropSmart - 用于在全国范围内做出更明智的种植决策的数字孪生
- 批准号:
2345039 - 财政年份:2023
- 资助金额:
$ 97.33万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track H: Phase II Smart Wearables for Expanding Workplace Access for People with Blindness and Low Vision
NSF 融合加速器轨道 H:第二阶段智能可穿戴设备,扩大失明和低视力人士的工作场所使用范围
- 批准号:
2345139 - 财政年份:2023
- 资助金额:
$ 97.33万 - 项目类别:
Cooperative Agreement
Convergence Accelerator Phase I (RAISE): Building the Federalism Data and Advanced Statistics Hub (FDASH)
融合加速器第一阶段 (RAISE):建立联邦制数据和高级统计中心 (FDASH)
- 批准号:
1937033 - 财政年份:2019
- 资助金额:
$ 97.33万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): Unlocking the Power of Data and Science to Empower American Workers
融合加速器第一阶段 (RAISE):释放数据和科学的力量,赋予美国工人权力
- 批准号:
1937061 - 财政年份:2019
- 资助金额:
$ 97.33万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): Competency Catalyst
融合加速器第一阶段 (RAISE):能力催化剂
- 批准号:
1937068 - 财政年份:2019
- 资助金额:
$ 97.33万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): Civil Infrastructure Systems Open Knowledge Network (CIS-OKN)
融合加速器第一阶段 (RAISE):民用基础设施系统开放知识网络 (CIS-OKN)
- 批准号:
1937115 - 财政年份:2019
- 资助金额:
$ 97.33万 - 项目类别:
Standard Grant