Genome-wide Light-inducible Tuning of Transcriptional Network Dynamic
转录网络动态的全基因组光诱导调节
基本信息
- 批准号:8017056
- 负责人:
- 金额:$ 67.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-27 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAmyotrophic Lateral SclerosisBiological SciencesBrainCellsComplexCuesDNA Binding DomainDNA SequenceDevelopmentEngineeringGene ExpressionGene Expression RegulationGenerationsGenesGeneticGenomeGenomicsHourIn VitroIndividualLightLinkMammalian CellMediatingMedicineModificationMotor NeuronsNatural regenerationNeuraxisNeuronsOpticsOrganismPatternPhysiologyPopulationProtein EngineeringRegenerative MedicineRegulationRegulator GenesSeriesSpinal cord injuryStagingTechniquesTechnologyTimeTissuesWorkZinc Fingersbiological researchcell typecellular developmentclinically relevantgene interactiongenome-widein vivoinfancyinjurednew technologynovelrepairedresearch studysynthetic biologytechnology development
项目摘要
DESCRIPTION (provided by applicant): We propose to develop and apply a paradigm-shifting technological platform that uses a series of Light- Inducible Transcriptional Effectors (LITEs) to orchestrate the temporal regulation of multiple genes in both individual cells in vitro and in the intact organism. The technology we propose to develop will be very broadly applicable and has the potential to radically transform the scale and rate of discovery across different biomedical fields. Application of this novel technology will enable high throughput discovery of the upstream transcriptional regulatory elements of any endogenous gene, as well as temporally precise modulation of gene expression in the native genome. Precise temporal and spatial patterns of gene expression are observed in different tissue and cell types, and are orchestrated and maintained by complex transcriptionally regulated circuits involving multiple genes. Due to the lack of integrated control and readout technologies that enable simultaneous perturbation and "fast" tuning of multiple genes, our ability to causally link transcriptional network dynamics with physiology and development remains at the infancy stage. The LITEs platform will enable modification and regulation of gene expression on the time-scale of hours using a non-invasive, light-mediated inductive strategy, thereby enabling a new generation of interactive genetic studies currently inaccessible with conventional techniques. Our proposal consists of two main components: 1) Novel technology development of light sensitive designer zinc finger (ZF) transcriptional modulators (LITEs-ZF). Genomic, synthetic biology, and protein engineering approaches will be used to develop a suite of novel light-inducible transcriptional regulators targeted at specific genes in the native genome of mammalian cells. Since ZF DNA binding domains can be engineered to target any DNA sequence, ZF-LITEs are applicable to a broad range of biological research studies in a variety of different organisms and cells types. 2) Application of the technology toward high-throughput in vitro and in vivo interrogation of transcriptional network dynamics in the central nervous system. In vitro application will be aimed at identification of upstream effectors of gene expression critical to the differentiation of corticospinal motor neurons (CSMN), a clinically relevant neuronal population that degenerates in amyotrophic lateral sclerosis (ALS) and is injured in spinal cord injury. In vivo application will be focused on directing the regeneration of CSMN by mimicking specific temporal sequences of CSMN-specific developmental cues within the adult brain. Given the broad applicability of this technology, the impact of this proposed work will be far reaching and will radically transform existing experimental approaches for studying gene interactions in all fields of life science and medicine.
PUBLIC HEALTH RELEVANCE: Understanding the transcriptional networks that drive cellular development and repair has landscape- shifting impacts in the field of regenerative medicine. Here we develop a non-invasive, optical technology to enable genome-wide tuning of gene expression dynamics toward regeneration of corticospinal motor neurons.
描述(由申请人提供):我们建议开发和应用一种范式转换技术平台,该平台使用一系列光诱导转录效应器(LITE)来协调体外单个细胞和完整生物体中多个基因的时间调控。我们提议开发的技术将具有非常广泛的适用性,并有可能从根本上改变不同生物医学领域的发现规模和速度。这项新技术的应用将使高通量地发现任何内源基因的上游转录调控元件,以及在时间上精确地调节天然基因组中的基因表达。基因表达的精确时间和空间模式在不同的组织和细胞类型中观察到,并由涉及多个基因的复杂转录调控电路协调和维持。由于缺乏集成的控制和读出技术来实现多个基因的同时干扰和“快速”调整,我们将转录网络动力学与生理和发育之间的因果联系起来的能力仍处于起步阶段。LITES平台将使用一种非侵入性的、光中介的诱导策略,在数小时的时间尺度上对基因表达进行修改和调节,从而实现目前用传统技术无法获得的新一代交互式遗传研究。我们的建议包括两个主要部分:1)光敏设计锌指(ZF)转录调节器(LITES-ZF)的新技术开发。基因组、合成生物学和蛋白质工程方法将被用来开发一套针对哺乳动物细胞天然基因组中特定基因的新型光诱导转录调控因子。由于ZF DNA结合域可以被设计成针对任何DNA序列,ZF-LITES适用于各种不同生物体和细胞类型的广泛的生物学研究。2)该技术在中枢神经系统转录网络动力学的体外和体内高通量研究中的应用。在体外应用的目的是鉴定对皮质脊髓运动神经元(CSMN)分化至关重要的基因表达的上游效应因子,CSMN是一种临床上相关的神经元群体,在肌萎缩侧索硬化症(ALS)中退化,并在脊髓损伤中受损。在体内的应用将集中在通过模仿成年大脑中CSMN特定发育线索的特定时间序列来指导CSMN的再生。鉴于这项技术的广泛适用性,这项拟议工作的影响将是深远的,并将从根本上改变现有的实验方法,研究生命科学和医学所有领域的基因相互作用。
公共卫生相关性:了解驱动细胞发育和修复的转录网络在再生医学领域具有改变格局的影响。在这里,我们开发了一种非侵入性的光学技术,能够在全基因组范围内调整基因表达动态,以促进皮质脊髓运动神经元的再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paola Arlotta其他文献
Paola Arlotta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paola Arlotta', 18)}}的其他基金
Systematic identification of enhancers to target the breadth of excitatory and inhibitory neuronal cell types in the cerebral cortex
系统鉴定增强剂以靶向大脑皮层兴奋性和抑制性神经元细胞类型的广度
- 批准号:
10512459 - 财政年份:2022
- 资助金额:
$ 67.14万 - 项目类别:
Comprehensive single-cell atlas of the developing mouse brain
发育中的小鼠大脑的综合单细胞图谱
- 批准号:
10686208 - 财政年份:2022
- 资助金额:
$ 67.14万 - 项目类别:
Neuron-oligodendrocyte communication underlying myelin distribution in the neocortex
新皮质中髓磷脂分布的神经元-少突胶质细胞通讯
- 批准号:
10502460 - 财政年份:2022
- 资助金额:
$ 67.14万 - 项目类别:
Comprehensive single-cell atlas of the developing mouse brain
发育中的小鼠大脑的综合单细胞图谱
- 批准号:
10523550 - 财政年份:2022
- 资助金额:
$ 67.14万 - 项目类别:
Neuron-oligodendrocyte communication underlying myelin distribution in the neocortex
新皮质中髓磷脂分布的神经元-少突胶质细胞通讯
- 批准号:
10664007 - 财政年份:2022
- 资助金额:
$ 67.14万 - 项目类别:
Molecular principles of neuronal maturation and integration in the adult and aging brain
成人和衰老大脑中神经元成熟和整合的分子原理
- 批准号:
10404657 - 财政年份:2018
- 资助金额:
$ 67.14万 - 项目类别:
Molecular principles of neuronal maturation and integration in the adult and aging brain
成人和衰老大脑中神经元成熟和整合的分子原理
- 批准号:
10159316 - 财政年份:2018
- 资助金额:
$ 67.14万 - 项目类别:
Modeling ASD-linked genetic mutations in 3D human brain organoids
在 3D 人脑类器官中模拟 ASD 相关基因突变
- 批准号:
10308455 - 财政年份:2018
- 资助金额:
$ 67.14万 - 项目类别:
Genetic neuroscience: How human genes and alleles shape neuronal phenotypes
遗传神经科学:人类基因和等位基因如何塑造神经元表型
- 批准号:
10223999 - 财政年份:2017
- 资助金额:
$ 67.14万 - 项目类别:
Genetic neuroscience: How human genes and alleles shape neuronal phenotypes
遗传神经科学:人类基因和等位基因如何塑造神经元表型
- 批准号:
9757833 - 财政年份:2017
- 资助金额:
$ 67.14万 - 项目类别:
相似海外基金
Amyotrophic Lateral Sclerosis: treating the circuit behind the disease
肌萎缩侧索硬化症:治疗疾病背后的回路
- 批准号:
MR/Y014901/1 - 财政年份:2024
- 资助金额:
$ 67.14万 - 项目类别:
Research Grant
Dysregulation of RNA processing as a driver of motor neuron dysfunction in Amyotrophic Lateral Sclerosis
RNA 加工失调是肌萎缩侧索硬化症运动神经元功能障碍的驱动因素
- 批准号:
MR/Y014286/1 - 财政年份:2024
- 资助金额:
$ 67.14万 - 项目类别:
Research Grant
Fasciculation IN Amyotrophic Lateral Sclerosis Using MUMRI (FINALSUM)
使用 MUMRI 治疗肌萎缩侧索硬化症的肌束颤动 (FINALSUM)
- 批准号:
MR/Y503502/1 - 财政年份:2024
- 资助金额:
$ 67.14万 - 项目类别:
Research Grant
I-Corps: Developing A Blood-Based Biomarker for the Detection and Monitoring of Amyotrophic Lateral Sclerosis
I-Corps:开发一种基于血液的生物标志物,用于检测和监测肌萎缩侧索硬化症
- 批准号:
2317745 - 财政年份:2023
- 资助金额:
$ 67.14万 - 项目类别:
Standard Grant
Development of CM-CS1 CAR Treg to Treat Amyotrophic Lateral Sclerosis (ALS)
开发 CM-CS1 CAR Treg 治疗肌萎缩侧索硬化症 (ALS)
- 批准号:
10696512 - 财政年份:2023
- 资助金额:
$ 67.14万 - 项目类别:
Targeted immunotherapy for amyotrophic lateral sclerosis and frontotemporal dementia
肌萎缩侧索硬化症和额颞叶痴呆的靶向免疫治疗
- 批准号:
10759808 - 财政年份:2023
- 资助金额:
$ 67.14万 - 项目类别:
Metrics for Brain Controlled Communication: A comprehensive review of clinical outcome assessments for communication brain computer interfaces in amyotrophic lateral sclerosis
脑控制通信指标:肌萎缩侧索硬化症通信脑机接口临床结果评估的全面综述
- 批准号:
10848139 - 财政年份:2023
- 资助金额:
$ 67.14万 - 项目类别:
Resolving the Role of Neuronal STING in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
解决神经元 STING 在肌萎缩侧索硬化症和额颞叶痴呆中的作用
- 批准号:
10606865 - 财政年份:2023
- 资助金额:
$ 67.14万 - 项目类别:
The Gut Microbiota as a Contributor to Sexual Dimorphism in Amyotrophic Lateral Sclerosis
肠道微生物群是肌萎缩侧索硬化症性别二态性的一个促成因素
- 批准号:
488892 - 财政年份:2023
- 资助金额:
$ 67.14万 - 项目类别:
Operating Grants
The biochemical stratification of amyotrophic lateral sclerosis
肌萎缩侧索硬化症的生化分层
- 批准号:
MR/Y001095/1 - 财政年份:2023
- 资助金额:
$ 67.14万 - 项目类别:
Fellowship