The effects of glucose on central vagal brainstem circuits
葡萄糖对中枢迷走神经脑干回路的影响
基本信息
- 批准号:8133540
- 负责人:
- 金额:$ 29.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAffectAfferent NeuronsAttenuatedBiological ModelsBloodBlood GlucoseBrain StemCachexiaCell membraneDataDeglutitionEatingEsophagealEsophagusFoodGastrointestinal HormonesGastroparesisGlucoseHomeostasisHormonalIn VitroIngestionIntestinesLaboratoriesLeadMeasuresMediatingMetabolicMotorNeurotransmitter ReceptorNutrientObesityOutputPathway interactionsPatternPhysiologicalProtein Kinase CReflex actionRegulationRelaxationSensorySerotoninSerotonin Receptors 5-HT-3SiteSliceStomachSynapsesTechniquesTestingTimeVariantVisceralabsorptionautonomic reflexcell motilityextracellularfeedinggastrointestinalgastrointestinal functionimmunocytochemistryimprovedin vivomotility disorderneural circuitneurophysiologypressurepublic health relevancereceptorreceptor expressionresponsetrafficking
项目摘要
DESCRIPTION (provided by applicant): Vagal brainstem circuits are vitally important in the co-ordination of food ingestion, gastrointestinal (GI) functions and autonomic homeostasis. The receptive relaxation reflex is a classical, vagally-mediated reflex activated upon distension of the esophagus (during swallowing, for example) that induces gastric relaxation and suppression of motility, allowing the stomach to accept ingesta isobarically. At the same time, this reflex is used as the first step in regulation of nutrient absorption and homeostasis. By decreasing gastric tone and motility, the receptive relaxation reflex delays gastric emptying, slows the rate at which chyme is transported to the intestine and, by consequence, regulates the rate of nutrient absorption. Data collected in recent years by several laboratories, including our own, has suggested that many GI hormones released following meal ingestion exert dramatic control over vagally-mediated GI functions. Adaptive responses within autonomic neural circuits are essential to adjust to ever-changing physiological conditions, indeed some of the most dramatic physiological variations occur as a consequence of meal ingestion. Blood glucose levels oscillate throughout the day and increase dramatically following food intake; adaptive autonomic sensory and motor responses are necessary to stabilize these fluctuations and maintain homeostasis. Acute changes in blood glucose levels, even within the physiological range, exert profound vagally-mediated effects on gastric motility and emptying. These glucose-induced responses are extremely important in minimizing otherwise dramatic, potentially damaging, excursions in blood glucose levels. Short-term plasticity within homeostatic neural circuits allows autonomic reflexes to be modulated, by either exaggerating or attenuating the output response, or by transforming the response pattern or duration. Even transient modulation in the strength of key synapses within autonomic circuits has the potential to induce short-term plasticity. Disruption or untimely variations in these adaptive responses, however, may cause inappropriately exaggerated reflexes and possibly even induce pathophysiological results. Exacerbation of the normal physiological response to meal ingestion, for example, may induce a variety of pathological conditions, including, for example, functional gastric motility disorders, obesity or cachexia. The specific mechanisms by which glucose can reorganize vagally-mediated gastrointestinal visceral reflexes are not well understood. Preliminary data from our laboratories strongly suggest that the receptive relaxation reflex could provide an ideal model system in which we can test specific, mechanistic hypotheses. We will use a variety of techniques including in vivo neurogastroenterology, immunocytochemistry and in vitro neurophysiology to test the overarching hypothesis that glucose regulates vagally-mediated gastrointestinal reflexes via brainstem sites of action. In short, we propose that the vagally-mediated gastrointestinal reflexes, such as the receptive relaxation reflex, are under the direct control of brainstem glucose levels and that glucose regulates the expression of neurotransmitter receptors on selected subpopulations of gastrointestinal vagal sensory neurons via modulation of protein kinase C-dependent pathways. This proposal will generate data that will lead to an improved understanding of mechanisms regulating the modulation of vago-vagal reflexes and how changes in metabolic and hormonal parameters affect the brainstem plasticity of ingestive and gastrointestinal-related autonomic homeostatic circuits.
PUBLIC HEALTH RELEVANCE: Vagal brainstem circuits are vitally important in the co-ordination of food ingestion, gastrointestinal (GI) functions and autonomic homeostasis. The receptive relaxation reflex is a classical, vagally-mediated reflex activated upon distension of the esophagus (during swallowing, for example) that induces gastric relaxation and suppression of motility, allowing the stomach to accept ingesta without increasing gastric pressure. At the same time, this reflex is used as the first step in regulation of nutrient absorption and homeostasis. By decreasing gastric tone and motility, the receptive relaxation reflex delays gastric emptying, slows the rate at which chyme is transported to the intestine and, by consequence, regulates the rate of nutrient absorption. Many GI hormones released following meal ingestion exert dramatic control over these vagally-mediated GI functions and such adaptive responses are essential to adjust to ever-changing physiological conditions. Disruption or untimely variations in these adaptive responses, however, may cause inappropriately exaggerated reflexes and possibly even induce pathophysiological results. Exacerbation of the normal physiological response to meal ingestion, for example, may induce a variety of pathological conditions, including, for example, functional gastric motility disorders, obesity or cachexia. The specific mechanisms by which glucose can reorganize vagally-mediated GI visceral reflexes are not well understood. Preliminary data from our laboratories strongly suggest that the receptive relaxation reflex could provide an ideal model system in which we can test specific, mechanistic hypotheses. We will use a variety of techniques including in vivo neurogastroenterology, immunocytochemistry and in vitro neurophysiology to test the overarching hypothesis that glucose regulates vagally-mediated gastrointestinal reflexes via brainstem sites of action. In short, we propose that the vagally-mediated GI reflexes, such as the receptive relaxation reflex, are under the direct control of brainstem glucose levels and that glucose regulates the expression of neurotransmitter receptors on selected subpopulations of gastrointestinal vagal sensory neurons via modulation of protein kinase C-dependent pathways. This proposal will generate data that will lead to an improved understanding of mechanisms regulating the modulation of vago-vagal reflexes and how changes in metabolic and hormonal parameters affect the brainstem plasticity of ingestive and GI-related autonomic homeostatic circuits.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirsteen Nairn Browning其他文献
Kirsteen Nairn Browning的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirsteen Nairn Browning', 18)}}的其他基金
Sex and stress: effects on the brain - gut axis
性与压力:对大脑-肠轴的影响
- 批准号:
10455424 - 财政年份:2019
- 资助金额:
$ 29.07万 - 项目类别:
Influence of diet on the development of homeostatic neurocircuits
饮食对稳态神经回路发育的影响
- 批准号:
10065504 - 财政年份:2018
- 资助金额:
$ 29.07万 - 项目类别:
The effects of glucose on central vagal brainstem circuits
葡萄糖对中枢迷走神经脑干回路的影响
- 批准号:
8516883 - 财政年份:2010
- 资助金额:
$ 29.07万 - 项目类别:
The effects of glucose on central vagal brainstem circuits
葡萄糖对中枢迷走神经脑干回路的影响
- 批准号:
8704922 - 财政年份:2010
- 资助金额:
$ 29.07万 - 项目类别:
The effects of glucose on central vagal brainstem circuits
葡萄糖对中枢迷走神经脑干回路的影响
- 批准号:
8310091 - 财政年份:2010
- 资助金额:
$ 29.07万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 29.07万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 29.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 29.07万 - 项目类别:
Studentship