Virtual Clinical Trials: Simulation of Digital Breast Tomosynthesis Screening

虚拟临床试验:数字乳腺断层合成筛查的模拟

基本信息

项目摘要

DESCRIPTION (provided by applicant): Although shown to decrease breast cancer mortality, mammographic screening suffers from less than optimal sensitivity and specificity. This has led to the development of new breast screening technologies such as digital breast tomosynthesis (DBT) and dedicated breast CT. These new technologies have shown promise in early studies, but their innate complexity challenges optimization. Breast imaging represents a complex chain of image acquisition, display and interpretation that is best tested in a clinical trial. Conducting clinical trials comparing all potential configurations of DBT systems is simply not practical. In response, we propose an innovative system to perform virtual clinical trials (VCT) of breast imaging technologies. We envision VCTs being complementary to clinical trials, and having a critical role in preclinical testing of imaging devices, so that human clinical trials may be targeted to the most promising devices and appropriate clinical roles. This approach leverages unique expertise of the collaborators. The University of Pennsylvania has developed a 3D virtual breast phantom that is well suited for use in VCTs; it provides infinite anatomic variation and can simulate a multitude of breast lesions. The Barco MeVIC (Medical Virtual Imaging Chain) is among the most sophisticated observer modeling tools available, incorporating image acquisition, image processing, image reconstruction, image display, and the human visual and perceptual systems. We propose to integrate these technologies into a VCT system for digital mammography (DM) and DBT. The VCT system will be used to simulate an actual trial of DBT and DM being conducted by the ACRIN clinical trials network in order to compare relative performance in terms of sensitivity and specificity with an actual clinical trial. The richness of the VCT components will allow exploration of the broadest possible sampling of breast parenchyma, lesions, and observer performance. We propose the following. The existing voxel phantom and lesion models will be refined. The image simulation environment will be adapted to model the Hologic DM/DBT system. The existing MeVIC 2D channelized Hotelling observer (CHO) will be adapted to 3D (2D + time) by studying and then implementing the human spatio-temporal contrast sensitivity function. Various channeling mechanisms will be tested and perceptual factors such as degradation of memory with time will be included. 2D and 3D 2-AFC experiments will be conducted with human observers to estimate observer performance for each observer, modality and lesion type. The performance of the MeVIC observer models will be tested with real and synthetic DM and DBT images. The resultant validated 2D and 3D observer models will be used to conduct a VCT of DBT and DM screening. The results of the VCT will be compared to the results of the ongoing ACRIN PA clinical trial of DBT and DM screening. If successful, the VCT system can be utilized to test technology variations in breast cancer screening technology, accelerating development and clinical implementation of improved imaging systems in a more cost-efficient fashion. PUBLIC HEALTH RELEVANCE: Medical imaging is undergoing a rapid expansion both in terms of new devices and new methodologies; as the pace of medical device development increases, one is faced with the quandary of increasing the pace of clinical trials or finding effective and safe alternatives to some clinical trials. In response, we propose the development of an innovative system to perform virtual clinical trials (VCT) of breast cancer screening technology that builds on our prior work in developing a virtual breast phantom and complex observer model for 3D breast imaging. If successful, the VCT system can be utilized to test technology variations in breast cancer screening technology, accelerating development and clinical implementation of improved imaging systems in a more cost-efficient fashion.
描述(由申请人提供):虽然显示出降低乳腺癌死亡率,但乳房X线摄影筛查的灵敏度和特异性低于最佳水平。这导致了新的乳腺筛查技术的发展,如数字乳腺断层合成摄影(DBT)和专用乳腺CT。这些新技术在早期研究中显示出了希望,但它们固有的复杂性对优化提出了挑战。乳腺成像代表了一个复杂的图像采集、显示和解释链,最好在临床试验中进行测试。进行比较DBT系统所有潜在配置的临床试验根本不切实际。作为回应,我们提出了一个创新的系统来执行虚拟临床试验(VCT)的乳腺成像技术。我们设想VCT是临床试验的补充,并在成像设备的临床前测试中发挥关键作用,以便人体临床试验可以针对最有前途的设备和适当的临床作用。这种方法利用了合作者的独特专业知识。宾夕法尼亚大学开发了一种非常适合用于VCT的3D虚拟乳房体模;它提供了无限的解剖变化,可以模拟多种乳房病变。Barco MeVIC(医学虚拟成像链)是目前最先进的观察者建模工具之一,集成了图像采集、图像处理、图像重建、图像显示以及人类视觉和感知系统。我们建议将这些技术集成到数字乳腺X射线摄影(DM)和DBT的VCT系统中。VCT系统将用于模拟ACRIN临床试验网络正在进行的DBT和DM的实际试验,以比较与实际临床试验在灵敏度和特异性方面的相对性能。丰富的VCT组成部分将允许探索最广泛的乳腺实质,病变和观察者的表现可能的采样。我们提出以下建议。将完善现有体素体模和病变模型。图像模拟环境将适用于Hologic DM/DBT系统的建模。现有的MeVIC 2D通道化霍特林观测器(CHO)将通过研究然后实现人类时空对比敏感度函数来适应3D(2D +时间)。将测试各种通道机制,并将包括记忆随时间推移而退化等感知因素。将使用人类观察者进行2D和3D 2-AFC实验,以估计每个观察者、模态和病变类型的观察者性能。MeVIC观测器模型的性能将用真实的和合成DM和DBT图像进行测试。所得到的经确认的2D和3D观察者模型将用于进行DBT和DM筛查的VCT。将VCT的结果与正在进行的ACRIN PA DBT和DM筛查临床试验的结果进行比较。如果成功,VCT系统可以用于测试乳腺癌筛查技术的技术变化,以更经济的方式加速改进成像系统的开发和临床实施。 公共卫生关系:医学成像在新设备和新方法方面都在快速发展;随着医疗设备开发步伐的加快,人们面临着加快临床试验步伐或寻找有效和安全的替代方案的困境。作为回应,我们建议开发一个创新的系统来执行虚拟临床试验(VCT)的乳腺癌筛查技术,建立在我们以前的工作,在开发一个虚拟的乳房体模和复杂的观察者模型的三维乳房成像。如果成功,VCT系统可以用于测试乳腺癌筛查技术的技术变化,以更经济的方式加速改进成像系统的开发和临床实施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANDREW DOUGLAS ARNOLD MAIDMENT其他文献

ANDREW DOUGLAS ARNOLD MAIDMENT的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANDREW DOUGLAS ARNOLD MAIDMENT', 18)}}的其他基金

High Performance, Quantitative Breast PET Scanner Integrated With Tomosynthesis
集成断层合成的高性能定量乳房 PET 扫描仪
  • 批准号:
    10587529
  • 财政年份:
    2016
  • 资助金额:
    $ 63.03万
  • 项目类别:
IWDM-2014: The 12th International Workshop on Breast Imaging
IWDM-2014:第十二届国际乳腺影像研讨会
  • 批准号:
    8785779
  • 财政年份:
    2014
  • 资助金额:
    $ 63.03万
  • 项目类别:
Virtual Clinical Trials: Simulation of Digital Breast Tomosynthesis Screening
虚拟临床试验:数字乳腺断层合成筛查的模拟
  • 批准号:
    8453455
  • 财政年份:
    2011
  • 资助金额:
    $ 63.03万
  • 项目类别:
Virtual Clinical Trials: Simulation of Digital Breast Tomosynthesis Screening
虚拟临床试验:数字乳腺断层合成筛查的模拟
  • 批准号:
    8263963
  • 财政年份:
    2011
  • 资助金额:
    $ 63.03万
  • 项目类别:
Virtual Clinical Trials: Simulation of Digital Breast Tomosynthesis Screening
虚拟临床试验:数字乳腺断层合成筛查的模拟
  • 批准号:
    8641667
  • 财政年份:
    2011
  • 资助金额:
    $ 63.03万
  • 项目类别:
Radiologists' performance in digital mammography and breast tomosynthesis
放射科医生在数字乳房X线摄影和乳腺断层合成方面的表现
  • 批准号:
    7899820
  • 财政年份:
    2009
  • 资助金额:
    $ 63.03万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63.03万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63.03万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 63.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 63.03万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 63.03万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 63.03万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 63.03万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 63.03万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 63.03万
  • 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
  • 批准号:
    BB/X013049/1
  • 财政年份:
    2023
  • 资助金额:
    $ 63.03万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了