Computational methods for human genomic data integration: demography, selection,
人类基因组数据整合的计算方法:人口统计学、选择、
基本信息
- 批准号:8956758
- 负责人:
- 金额:$ 3.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBinding SitesBiologicalBiological AssayBiologyCatalogingCatalogsCommunitiesComputer softwareComputing MethodologiesDataData AnalysesData CollectionData SetDemographyDetectionDevelopmentDiseaseElementsEvolutionFunctional RNAGenealogyGenesGeneticGenetic PolymorphismGenetic RecombinationGenomeGenomicsGraphHealthHumanHuman GenomeIndividualInvestmentsKnowledgeMeasuresMedicineMethodsNatural SelectionsPatternPhylogenetic AnalysisPopulationPopulation GeneticsProcessResearchResourcesRunningSample SizeShapesSoftware EngineeringSoftware ToolsSolutionsStatistical MethodsStatistical ModelsStructureVariantWorkbasecomparativecomparative genomicscomputerized toolsdata integrationfollow-upfunctional genomicsgenome sequencinggenome-widehuman dataimprovedinnovationinsighttranscription factorvalidation studies
项目摘要
DESCRIPTION (provided by applicant):
Project Description Recent investments in data collection have produced rich catalogs of information about genomic function, human variation, and mammalian evolution, but improved computational tools are needed to integrate and interpret these catalogs, in order to permit the acquisition of new biological knowledge and advances in medicine. Here we outline an ambitious project to develop computational methods that will integrate publicly available data catalogs to provide deep new insights about the evolution and function of sequences in the human genome. Our proposal focuses in particular on noncoding sequences, which remain the most sparsely annotated and poorly understood regions of the genome. The proposal addresses three fundamental and closely related problems: (1) inference of human demography, to provide improved "null models" for statistical genetics and reveal local signatures of gene flow, natural selection, and other phenomena; (2) detection of natural selection on interspersed noncoding sequences such as transcription factor binding sites, to provide information about their function and the evolutionary processes that have shaped them; and (3) genome-wide prediction of "functional potential" based on integrated data sets, to identify new functional elements and prioritize candidate disease loci for experimental follow-up. Our proposal includes innovative statistical modeling, new algorithms for inference, the development of freely available software tools and browser resources, and detailed analyses of the latest genomic data sets. To our knowledge this will be the most comprehensive effort yet undertaken to integrate comparative, population, and functional genomic data in addressing fundamental questions about the function and evolution of sequences in the human genome. Our software and the results of our data analysis will be freely available to the research community.
描述(由申请人提供):
最近在数据收集方面的投资已经产生了关于基因组功能,人类变异和哺乳动物进化的丰富信息目录,但需要改进的计算工具来整合和解释这些目录,以便获得新的生物学知识和医学进展。在这里,我们概述了一个雄心勃勃的项目,以开发计算方法,将整合公开可用的数据目录,以提供有关人类基因组序列的进化和功能的深刻的新见解。我们的建议特别关注非编码序列,这仍然是基因组中注释最少和了解最少的区域。这一建议涉及三个基本的和密切相关的问题:(1)人类人口统计学的推断,为统计遗传学提供改进的“零模型”,并揭示基因流、自然选择和其他现象的局部特征;(2)检测散布的非编码序列如转录因子结合位点上的自然选择,提供有关其功能和形成它们的进化过程的信息;以及(3)基于整合数据集的“功能潜能”的全基因组预测,以确定新的功能元件,并优先考虑候选疾病位点进行实验随访。我们的建议包括创新的统计建模,新的推理算法,开发免费的软件工具和浏览器资源,以及对最新基因组数据集的详细分析。据我们所知,这将是迄今为止最全面的努力,以整合比较,人口和功能基因组数据,解决有关人类基因组序列的功能和进化的基本问题。我们的软件和数据分析结果将免费提供给研究界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Charles Siepel其他文献
Adam Charles Siepel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Charles Siepel', 18)}}的其他基金
Evolutionary Human Genomics: Demography, Natural Selection, and Transcriptional Regulation
进化人类基因组学:人口学、自然选择和转录调控
- 批准号:
10360470 - 财政年份:2018
- 资助金额:
$ 3.32万 - 项目类别:
Evolutionary Human Genomics: Demography, Natural Selection, and Transcriptional Regulation
进化人类基因组学:人口学、自然选择和转录调控
- 批准号:
10551645 - 财政年份:2018
- 资助金额:
$ 3.32万 - 项目类别:
Continued development and maintenance of the PHAST software for comparative genomics
持续开发和维护比较基因组学 PHAST 软件
- 批准号:
8797493 - 财政年份:2015
- 资助金额:
$ 3.32万 - 项目类别:
Continued development and maintenance of the PHAST software for comparative genomics
持续开发和维护用于比较基因组学的 PHAST 软件
- 批准号:
9058580 - 财政年份:2015
- 资助金额:
$ 3.32万 - 项目类别:
Computational methods for human genomic data integration: demography, selection,
人类基因组数据整合的计算方法:人口统计学、选择、
- 批准号:
8601114 - 财政年份:2013
- 资助金额:
$ 3.32万 - 项目类别:
Computational methods for human genomic data integration: demography, selection,
人类基因组数据整合的计算方法:人口统计学、选择、
- 批准号:
8458272 - 财政年份:2013
- 资助金额:
$ 3.32万 - 项目类别:
Computational methods for human genomic data integration: demography, selection,
人类基因组数据整合的计算方法:人口统计学、选择、
- 批准号:
9198019 - 财政年份:2013
- 资助金额:
$ 3.32万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 3.32万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 3.32万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 3.32万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 3.32万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 3.32万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 3.32万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 3.32万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 3.32万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 3.32万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 3.32万 - 项目类别:
Continuing Grant