Evolutionary Human Genomics: Demography, Natural Selection, and Transcriptional Regulation
进化人类基因组学:人口学、自然选择和转录调控
基本信息
- 批准号:10551645
- 负责人:
- 金额:$ 57.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AddressAllelesAreaArtificial IntelligenceBirdsCRISPR screenChiropteraComputing MethodologiesDataDemographyDetectionEnhancersEssential GenesEventEvolutionFundingGene ExpressionGenesGenetic DriftGenetic RecombinationGenetic VariationGenomeGenomicsGoalsGraphHealthHumanHuman BiologyImmunityLightLinkMalignant NeoplasmsMammalsMeasuresMethodologyMethodsModernizationMolecular EvolutionMutationNatural SelectionsPaperPatternPhenotypePhylogenyPolygenic TraitsPopulationPopulation GeneticsPrintingProductivityPublishingRNARadiationRegulatory ElementResearchSamplingSeriesShapesSoftware ToolsSouth AmericanTechniquesTrainingTranscriptional RegulationVariantWorkbiophysical modelcomparative genomicsdeep neural networkepigenomicsfitnessgenomic datagraph neural networkhuman diseasehuman genomicsinnovationinsightintelligence geneticslensnovelprogramspromoterreconstructionstatisticstranscriptome sequencing
项目摘要
Project Summary
My research program aims to make sense of modern genomic data through the lens of molecular evolution.
Drawing from ideas and techniques in statistics, artificial intelligence, and population genetics, we seek both to
understand the evolutionary forces that have shaped present-day genome sequences, and to use evolutionary
patterns to gain insight into the phenotypic importance of particular genomic sequences, with broad implications
for human health. Our work focuses in particular on three major areas: (1) evolutionary reconstruction based on
genome sequences; (2) inference of the fitness consequences of human mutations; and (3) the study of
transcriptional regulation and its evolution in mammals.
In the last funding period (2018–2022), we achieved major advances in each of these areas, including both
methodological advances and applications of new methods to important and timely scientific questions. For
example, we recently developed innovative new methods for the inference of ancestral recombination graphs
(ARGs) from multi-population sequence data; for the detection of selective sweeps using ARGs and deep neural
networks; for the identification of essential genes from CRISPR-Cas9 screens; for the estimation of relative RNA
half-lives based on widely available RNA-sequencing data types; and for the detection of gains and losses of
cis-regulatory elements along the branches of a phylogeny based on epigenomic data. These methods have all
been implemented as publicly available software tools. Based on these and other methods, we published a
variety of novel scientific findings, including the discovery and characterization of previously unknown
introgression events between modern and archaic hominins; a genomic analysis of South American birds
indicating their radiation was primarily driven by recent selective sweeps; an analysis indicating extensive
evidence of rapid evolution in immunity- and cancer-related genes in bats; and an analysis indicating that
enhancers are gained and lost at about twice the rate of promoters in mammalian evolution. These findings were
described in a total of 17 original papers and preprints.
For this renewal application, we propose to continue our research within each of these three key areas. Specific
goals include developing new statistical sampling methods that scale to very large ARGs; using domain
adaptation to reduce training bias in population genomics; measuring extreme levels of purifying selection from
patterns of rare variation in human populations; characterizing the distributions of fitness effects for polygenic
traits; identifying and characterizing deleterious variants linked to advantageous alleles; and developing a unified
biophysical modeling framework for nascent RNA sequencing data with applications to comparative genomics
and elongation-rate estimation. A renewal of R35 funding will enable us to remain highly productive contributors
to this critically important research area.
项目摘要
我的研究计划旨在通过分子进化的透镜来理解现代基因组数据。
借鉴统计学、人工智能和群体遗传学的思想和技术,我们寻求
了解塑造当今基因组序列的进化力量,并使用进化
模式,以深入了解特定基因组序列的表型重要性,具有广泛的影响
为了人类健康。我们的工作特别集中在三个主要领域:(1)基于进化的重建
基因组序列;(2)推断人类突变的适应性后果;(3)研究
转录调控及其在哺乳动物中的进化。
在上一个资助期(2018-2022年),我们在上述每个领域都取得了重大进展,包括
方法的进步和新方法在重要和及时的科学问题上的应用。为
例如,我们最近开发了创新的新方法,用于推断祖先重组图
(ARG);用于使用ARG和深度神经网络检测选择性扫描。
网络;用于从CRISPR-Cas9筛选中鉴定必需基因;用于估计相对RNA
基于广泛可用的RNA测序数据类型的半衰期;以及
顺式调控元件沿着分支的表观基因组数据的基础上的一个基因组。这些方法都有
已作为公开可用的软件工具实施。基于这些和其他方法,我们发表了一份
各种新的科学发现,包括发现和表征以前未知的
现代人与古代人之间的基因渗入事件;南美洲鸟类的基因组分析
表明他们的辐射主要是由最近的选择性扫描驱动的;一项分析表明,
蝙蝠免疫和癌症相关基因快速进化的证据;以及一项分析表明,
在哺乳动物进化中,增强子的获得和丢失的速率大约是启动子的两倍。这些发现
在总共17篇原始论文和预印本中描述。
对于这次更新申请,我们建议继续在这三个关键领域进行研究。具体
目标包括开发新的统计抽样方法,可扩展到非常大的ARG;使用域
适应,以减少人口基因组学的培训偏差;测量极端水平的纯化选择,
人类群体中罕见变异的模式;表征多基因适应性效应的分布
性状;识别和表征与有利等位基因连锁的有害变体;以及开发统一的
新生RNA测序数据的生物物理建模框架及其在比较基因组学中的应用
和伸长速率估计。R35资金的更新将使我们能够保持高生产力的贡献者
这个至关重要的研究领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Charles Siepel其他文献
Adam Charles Siepel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Charles Siepel', 18)}}的其他基金
Evolutionary Human Genomics: Demography, Natural Selection, and Transcriptional Regulation
进化人类基因组学:人口学、自然选择和转录调控
- 批准号:
10360470 - 财政年份:2018
- 资助金额:
$ 57.6万 - 项目类别:
Continued development and maintenance of the PHAST software for comparative genomics
持续开发和维护比较基因组学 PHAST 软件
- 批准号:
8797493 - 财政年份:2015
- 资助金额:
$ 57.6万 - 项目类别:
Continued development and maintenance of the PHAST software for comparative genomics
持续开发和维护用于比较基因组学的 PHAST 软件
- 批准号:
9058580 - 财政年份:2015
- 资助金额:
$ 57.6万 - 项目类别:
Computational methods for human genomic data integration: demography, selection,
人类基因组数据整合的计算方法:人口统计学、选择、
- 批准号:
8956758 - 财政年份:2013
- 资助金额:
$ 57.6万 - 项目类别:
Computational methods for human genomic data integration: demography, selection,
人类基因组数据整合的计算方法:人口统计学、选择、
- 批准号:
8601114 - 财政年份:2013
- 资助金额:
$ 57.6万 - 项目类别:
Computational methods for human genomic data integration: demography, selection,
人类基因组数据整合的计算方法:人口统计学、选择、
- 批准号:
8458272 - 财政年份:2013
- 资助金额:
$ 57.6万 - 项目类别:
Computational methods for human genomic data integration: demography, selection,
人类基因组数据整合的计算方法:人口统计学、选择、
- 批准号:
9198019 - 财政年份:2013
- 资助金额:
$ 57.6万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 57.6万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 57.6万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 57.6万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 57.6万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 57.6万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 57.6万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 57.6万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 57.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 57.6万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 57.6万 - 项目类别: