Population-Genetic Studies for Association Mapping
关联作图的群体遗传学研究
基本信息
- 批准号:8055339
- 负责人:
- 金额:$ 2.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAllelesChromosome MappingCollectionCommunitiesComplexComputer SimulationComputer softwareDataDevelopmentDiseaseDisease AssociationDisease susceptibilityEnsureEventEvolutionFamilyFrequenciesFutureGeneticGenetic ModelsGenetic Population StudyGenetic ProcessesGenetic RecombinationGenetic VariationGenomeGenotypeGoalsHaplotypesHumanHumanitiesIndividualJointsKnowledgeLeftLinkage DisequilibriumMapsMeasuresMethodsMicrosatellite RepeatsModelingMutationOutcomePatternPhasePhenotypePlayPopulationPopulation GeneticsPredispositionProductionPropertyPublicationsRecording of previous eventsResearchResearch DesignResearch PersonnelResourcesRoleSamplingSignal TransductionSingle Nucleotide PolymorphismSoftware ToolsStatistical MethodsStatistical ModelsStochastic ProcessesStratificationStructureTechniquesTimeVariantWorkWritingbasedesigndisease phenotypegenetic analysisgenetic associationgenome wide association studygenome-widegenotyping technologyhuman population geneticsmathematical theorymethod developmentnovel strategiesprogramssimulationsoftware developmentstatisticstheoriestransmission process
项目摘要
DESCRIPTION (provided by applicant): Association studies provide a powerful approach for locating alleles that contribute to disease susceptibility and phenotypic variation. Since population-genetic processes play a central role in generating patterns of statistical association between diseases and their causal alleles, an understanding of human population- genetic history and its consequences for association is important for the development of methods to map disease susceptibility alleles. We propose four specific aims that will augment and capitalize on theoretical and empirical population genetics knowledge of human populations to advance the prospects for identifying disease susceptibility loci by association mapping. This work will be performed through a combination of mathematical theory, computer simulation, and analysis of human population-genetic data. First, we will extend methods for analysis of the production by population structure of spurious associations between genotypes and disease to accommodate clinal or spatially distributed populations. The new approaches will make it possible to reduce the occurrence of the false positive associations that arise from population structure or stratification in a broader set of scenarios than is currently possible. Second, we will develop population-genetic models of human evolution that use approximate Bayesian computation to account for patterns of haplotype variation among diverse worldwide populations. Third, we will develop a framework for statistical analysis of replication studies of genetic association that takes into account the fact that all humans are related by descent from shared ancestors. Fourth, we will compare properties of genetic association statistics computed from genotypes and from estimated haplotypes and will identify scenarios in which haplotype statistics provide more accurate association information than methods that do not require haplotype estimation. This work will enable more accurate estimation of the linkage disequilibrium important in association study design and analysis. The long-term goal of the project is to make optimal use of knowledge of human variation and evolutionary history for the design and analysis of association mapping studies. Our efforts will make use of genome-wide microsatellite and single-nucleotide polymorphism data that we have gathered in a worldwide collection of populations. As part of the project, we will be developing new statistical methods and implementing them in software tools that we will make publicly available.
描述(由申请人提供):关联研究为定位导致疾病易感性和表型变异的等位基因提供了强有力的方法。由于群体遗传过程在产生疾病与其致病等位基因之间的统计关联模式中起着核心作用,因此了解人类群体遗传史及其关联后果对于开发疾病易感性等位基因图谱的方法非常重要。我们提出了四个具体的目标,这将增加和利用理论和经验的人口群体遗传学知识的人群,以推进通过关联映射确定疾病易感基因座的前景。这项工作将通过数学理论、计算机模拟和人类群体遗传数据分析相结合来进行。首先,我们将扩展的方法,分析生产的基因型和疾病之间的虚假关联的人口结构,以适应临床或空间分布的人口。新的方法将有可能在比目前可能的更广泛的一组情景中减少因人口结构或分层而产生的假阳性关联的发生。第二,我们将开发人类进化的群体遗传模型,该模型使用近似贝叶斯计算来解释世界各地不同群体之间的单倍型变异模式。第三,我们将开发一个框架,用于遗传关联的复制研究的统计分析,考虑到所有人类都是由共同祖先的血统相关的事实。第四,我们将比较从基因型和估计的单倍型计算的遗传关联统计的属性,并确定单倍型统计比不需要单倍型估计的方法提供更准确的关联信息的情况。这项工作将使更准确地估计连锁不平衡的关联研究的设计和分析的重要。该项目的长期目标是最佳利用人类变异和进化历史的知识来设计和分析关联映射研究。我们的努力将利用我们在世界范围内收集的全基因组微卫星和单核苷酸多态性数据。作为该项目的一部分,我们将开发新的统计方法,并在我们将公开提供的软件工具中实施这些方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noah Rosenberg其他文献
Noah Rosenberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Noah Rosenberg', 18)}}的其他基金
Population genetics for large-scale sequencing studies of diverse populations
用于不同人群大规模测序研究的群体遗传学
- 批准号:
10709562 - 财政年份:2010
- 资助金额:
$ 2.13万 - 项目类别:
Population genetics for large-scale sequencing studies of diverse populations
用于不同人群大规模测序研究的群体遗传学
- 批准号:
10063406 - 财政年份:2010
- 资助金额:
$ 2.13万 - 项目类别:
Population genetics for large-scale sequencing studies of diverse populations
用于不同人群大规模测序研究的群体遗传学
- 批准号:
10518819 - 财政年份:2010
- 资助金额:
$ 2.13万 - 项目类别:
Population-Genetic Studies for Association Mapping
关联作图的群体遗传学研究
- 批准号:
7901901 - 财政年份:2009
- 资助金额:
$ 2.13万 - 项目类别:
Population-Genetic Studies for Association Mapping
关联作图的群体遗传学研究
- 批准号:
7248301 - 财政年份:2007
- 资助金额:
$ 2.13万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 2.13万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 2.13万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 2.13万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 2.13万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 2.13万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 2.13万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 2.13万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 2.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 2.13万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 2.13万 - 项目类别: