Structural Biology of Genome Maintenance and DNA repair
基因组维护和 DNA 修复的结构生物学
基本信息
- 批准号:8149120
- 负责人:
- 金额:$ 53.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With combined biochemical, mutational, and protein structural analyses (eg. X-ray crystallography and Small angle X-ray scattering), we dissect functionally critical protein conformations, protein-protein and protein-nucleic acid interfaces. We are currently focused on examining structure/function of DNA end processing factor Aprataxin (APTX). APTX is a conserved eukaryotic DNA repair enzyme that is important for protection of cells from oxidative DNA damage, and APTX mutations cause the recessive hereditary neurodegenerative disorder Ataxia with Oculomotor Apraxia 1 (AOA1). In the ultimate step of DNA replication and repair processes, DNA ligases seal DNA nicks through an imperfect mechanism that can abort when the ligase encounters DNA termini harboring the products of oxidative or DNA-alkylation damage. Such "abortive ligation" generates a secondary form of damage, 5'-adenylated DNA-termini, which are corrected by APTX to protect genomic integrity. However, due to a lack of protein structural information, the molecular basis for APTX catalytic reversal of 5' adenylation damage, and how APTX is inactivated in the neurodegenerative disorder Ataxia with Oculomotor Apraxia 1 (AOA1) remain largely unknown. Towards understanding APTX mechanism we have developed robust overexpression systems for human and yeast aprataxin homologs and we aim to define molecular determinants of APTX DNA repair, and how APTX integrates into damage repair pathways through interactions with DNA break repair pathways through binding Xrcc1 (DNA single strand break repair, SSBR) and Xrcc4 (DNA double strand break repair, DSBR). We are specifically testing hypotheses that: 1) APTX Histidine triad (HIT) and Zinc finger (Znf) domains form a composite fused catalytic domain for DNA structure specific nick-binding, 5'-AMP recognition, and DNA-deadenylation processing, 2) AOA1 patient mutations disrupt APTX protein folding and/or directly impair APTX catalytic activities through active site distortion, and 3) The FHA domain and FHA-HIT linker provides a flexible leash targeting APTX DNA deadenylation activity to Caesin kinase 2 (CK2) phosphorylated XRCC4 and XRCC1 DNA repair scaffolds. Ionizing radiation (IR) and non-ionizing radiation from exogenous natural sources such as cosmic rays, radioactive elements in the environment, or from artificial sources including diagnostic X-rays mount a constant assault our genomes. Oxidative DNA damage from reactive oxygen species generated as by-products of mitochondrial respiration, during chronic inflammation, or upon exposure to environmental agents poses a threat to all cell types. Thus our knowledge of the DNA SSBR and DSBR repair mechanisms we are studying has critical implications for environmental health. Significantly, DNA repair defects underpin many human diseases associated with disorders of the nervous system and we are working to understand how heritable DNA repair defects impair damage surveillance and contribute to neurodegeneration.
通过合并的生化,突变和蛋白质结构分析(例如X射线晶体学和小角度X射线散射),我们在功能上进行了关键的蛋白质构象,蛋白质蛋白质和蛋白质核酸界面。目前,我们专注于检查DNA终端加工因子Aprataxin(APTX)的结构/功能。 APTX是一种保守的真核DNA修复酶,对于保护细胞免受氧化性DNA损伤很重要,APTX突变会导致隐性遗传性神经退行性疾病共济失调,其动眼作用1(AOA1)。在DNA复制和修复过程的最终步骤中,DNA连接酶通过一种不完善的机制密封DNA,当连接酶遇到具有氧化或DNA烷基化损伤产物的DNA末端时,该机制可能会流产。这种“流产的连接”产生了一种次要形式的损伤形式,即5'-腺苷酸化的DNA末端,通过APTX校正以保护基因组完整性。然而,由于缺乏蛋白质结构信息,APTX催化逆转5'腺苷酸化损伤的分子基础,以及在神经退行性疾病共济失调中使用眼动性失调1(AOA1)在神经退行性疾病中灭活的方法仍然很大。 Towards understanding APTX mechanism we have developed robust overexpression systems for human and yeast aprataxin homologs and we aim to define molecular determinants of APTX DNA repair, and how APTX integrates into damage repair pathways through interactions with DNA break repair pathways through binding Xrcc1 (DNA single strand break repair, SSBR) and Xrcc4 (DNA double strand break repair, DSBR). We are specifically testing hypotheses that: 1) APTX Histidine triad (HIT) and Zinc finger (Znf) domains form a composite fused catalytic domain for DNA structure specific nick-binding, 5'-AMP recognition, and DNA-deadenylation processing, 2) AOA1 patient mutations disrupt APTX protein folding and/or directly impair APTX catalytic activities through active site distortion, and 3) The FHA结构域和FHA-HIT接头提供了针对APTX DNA降苯式活性的柔性皮带,该链球菌2(CK2)磷酸化的XRCC4和XRCC1 DNA修复支架。 来自外源天然来源的电离辐射(IR)和非电离辐射,例如宇宙射线,环境中的放射性元件,或包括诊断X射线在内的人工来源,持续攻击我们的基因组。由线粒体呼吸,慢性炎症期间或暴露于环境剂时产生的活性氧造成的氧化DNA损伤对所有细胞类型构成威胁。因此,我们对正在研究的DNA SSBR和DSBR修复机制的了解对环境健康具有至关重要的意义。值得注意的是,DNA修复缺陷是许多与神经系统疾病相关的人类疾病的基础,我们正在努力了解可遗传的DNA修复缺陷如何损害损伤监测并导致神经变性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Williams其他文献
Robert Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Williams', 18)}}的其他基金
Developing Novel REV-ERB Agonists for the Treatment of Neuroinflammation in Alzheimer's Disease
开发用于治疗阿尔茨海默病神经炎症的新型 REV-ERB 激动剂
- 批准号:
10482583 - 财政年份:2022
- 资助金额:
$ 53.96万 - 项目类别:
Developing Novel REV-ERB Agonists for the Treatment of Neuroinflammation in Alzheimer's Disease
开发用于治疗阿尔茨海默病神经炎症的新型 REV-ERB 激动剂
- 批准号:
10725949 - 财政年份:2022
- 资助金额:
$ 53.96万 - 项目类别:
Structural Biology of Genome Maintenance and DNA repair
基因组维护和 DNA 修复的结构生物学
- 批准号:
8553800 - 财政年份:
- 资助金额:
$ 53.96万 - 项目类别:
Structural Biology of Genome Maintenance and DNA repair
基因组维护和 DNA 修复的结构生物学
- 批准号:
8734164 - 财政年份:
- 资助金额:
$ 53.96万 - 项目类别:
Structural Biology of Genome Maintenance and DNA repair
基因组维护和 DNA 修复的结构生物学
- 批准号:
8336656 - 财政年份:
- 资助金额:
$ 53.96万 - 项目类别:
Structural Biology of Genome Maintenance and DNA repair
基因组维护和 DNA 修复的结构生物学
- 批准号:
8929804 - 财政年份:
- 资助金额:
$ 53.96万 - 项目类别:
相似国自然基金
Sen1和Dbl8协同RNA聚合酶III调控RNA-DNA杂化物稳态参与维护基因组稳定性的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Sen1和Dbl8协同RNA聚合酶III调控RNA-DNA杂化物稳态参与维护基因组稳定性的分子机制
- 批准号:32201061
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
植物花粉营养细胞线粒体基因组遗传信息的维护和使用机制
- 批准号:32170341
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
蛋白相互作用组分析研究DNA损伤修复在基因组稳定性维护中的作用机制
- 批准号:81672773
- 批准年份:2016
- 资助金额:73.0 万元
- 项目类别:面上项目
PTEN对DNA损伤修复相关基因的表达调控及维护基因组稳定性中的作用机制
- 批准号:30872136
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
XRN2-DDX23 Cooperation in Avoiding R-loop-induced Genomic Instability
XRN2-DDX23 合作避免 R 环引起的基因组不稳定
- 批准号:
10654331 - 财政年份:2023
- 资助金额:
$ 53.96万 - 项目类别:
Genomic Instability as A Driver of Stem Cell Exhaustion
基因组不稳定性是干细胞衰竭的驱动因素
- 批准号:
10722284 - 财政年份:2023
- 资助金额:
$ 53.96万 - 项目类别:
ETS1-dependent combinatorial control of oncogenic transcription in Notch-activated T-ALL
Notch激活的T-ALL中致癌转录的ETS1依赖性组合控制
- 批准号:
10733945 - 财政年份:2023
- 资助金额:
$ 53.96万 - 项目类别:
Aging induced DNA double-strand break analysis in yeast
酵母中衰老诱导的 DNA 双链断裂分析
- 批准号:
10605475 - 财政年份:2023
- 资助金额:
$ 53.96万 - 项目类别: