Stretchable, Biodegradable, and Self-Healing Semiconductors for Wearable and Implantable Sensors
用于可穿戴和植入式传感器的可拉伸、可生物降解和自我修复的半导体
基本信息
- 批准号:8954687
- 负责人:
- 金额:$ 219.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AwardBiochemicalBiocompatibleBiologicalCarbonChemicalsCoinDevice or Instrument DevelopmentDevicesDiseaseElasticityElectronicsEngineeringGoalsHealthHealth SciencesHealthcareIntracranial PressureMeasuresMechanicsMethodologyMicrofabricationModalityModelingMolecularMonitorPhasePhysiologicalPolymer ChemistryPolymersPropertyProsthesisPrunella vulgarisRattusResearchResearch DesignRetinaSemiconductorsSignal TransductionSkinSynthesis ChemistryTelemetryTissuesToxic effectTransducersTraumatic Brain InjuryUnited States National Institutes of HealthWireless Technologybasebiomaterial compatibilityelastomericexperiencehuman tissueimplantable deviceimplanted sensorinstrumentnanofabricationpolymerizationpressurepreventpublic health relevancerepairedsensor
项目摘要
DESCRIPTION (provided by applicant): This project aims to create a new class of semiconducting polymers for applications in wearable and implantable healthcare that-in contrast to all other research on "electronic skin"-will actually have properties inspired by biological tissue: extreme elasticity, biodegradability, and the ability to self-heal. The goal of organic bioelectronics is to detect and treat disease by using signal transducers based on organic conductors and semiconductors in wearable and implantable devices. Except for the carbon framework of these otherwise versatile materials, they have essentially no properties in common with biological tissue: electronic polymers are typically stiff and brittle, and do not degrade under physiological conditions. Seamless integration with soft, biodegradable, and self-healing tissue has thus not yet been realized. In Phase I of this project, we will develop a modular synthetic methodology based on segmented polymerization of semiconducting segments and biodegradable elastomeric segments. Phase II will characterize the properties of this new class of materials, which will be the first polymeric semiconductors to have the mechanical properties of human tissue, the first known semiconductors capable of self-repair, and the first organic semiconductors that can degrade under physiological conditions into biocompatible byproducts, which will be established in a rat model. Phase III will use the synthetic materials as transducers of chemical, biomolecular, mechanical, and electrical signals in several modalities as proof-of-concept devices, including skin-like pressure sensors for instrumented prostheses, biochemical sensors for wearable health monitors, and photodetectors for artificial retinas. Phase III will culminate in the demonstration of an implantable epidural pressure sensor for continuous monitoring of intracranial pressure (ICP). The long-term goal of this research is to endow these devices with the capability of wireless power and telemetry. The strength of the proposal is its vertically integrated strategy that combines molecular engineering and synthetic chemistry with determination of biodegradability and biocompatibility, the fabrication of devices, and their use in detecting physiological signals relevant to a range of diseases. The proposed research will build on my documented experience executing and directing projects in an especially broad range of topics: total synthesis of medicinally active compounds, micro- and nanofabrication of electronic devices, and development of stretchable materials and skin-like sensors for applications in implantable health monitoring. I coined the term "Molecularly Stretchable Electronics" to describe the research of my group, which is becoming internationally recognized as a leader in the mechanical properties of functional electronic polymers. The NIH Director's New Innovator Award would jumpstart my group's progress toward the long-term goal of my research: designing soft electronic materials specifically for applications in the health sciences.
描述(由申请人提供):该项目旨在创建一类新的半导体聚合物,用于可穿戴和植入式医疗保健,与所有其他关于“电子皮肤”的研究相反,它实际上具有受生物组织启发的特性:极端弹性,生物降解性和自我修复能力。有机生物电子学的目标是通过在可穿戴和可植入设备中使用基于有机导体和半导体的信号换能器来检测和治疗疾病。除了这些多用途材料的碳框架之外,它们基本上没有与生物组织相同的特性:电子聚合物通常是硬而脆的,并且在生理条件下不会降解。因此,与柔软的、可生物降解的和自愈合的组织的无缝整合尚未实现。在该项目的第一阶段,我们将开发一种基于半导体片段和可生物降解弹性体片段的分段聚合的模块化合成方法。第二阶段将表征这类新材料的特性,这将是第一个具有人体组织机械特性的聚合物半导体,第一个已知的能够自我修复的半导体,以及第一个可以在生理条件下降解为生物相容性副产品的有机半导体,这将在大鼠模型中建立。第三阶段将使用合成材料作为化学,生物分子,机械和电信号的转换器,以几种形式作为概念验证设备,包括用于仪器假体的皮肤压力传感器,用于可穿戴健康监测器的生化传感器,以及用于人工视网膜的光电探测器。第三阶段将最终演示用于连续监测颅内压(ICP)的植入式硬膜外压力传感器。本研究的长期目标是赋予这些设备无线供电和遥测的能力。该提案的优势在于其垂直整合战略,该战略将分子工程和合成化学与生物降解性和生物相容性的测定,设备的制造及其在检测与一系列疾病相关的生理信号中的应用相结合。拟议的研究将建立在我在一个特别广泛的主题执行和指导项目的记录经验的基础上:药用活性化合物的全合成,电子设备的微纳米纤维,以及可拉伸材料和皮肤传感器的开发,用于植入式健康监测。我创造了“分子可拉伸电子”这个术语来描述我的团队的研究,该团队正在成为国际公认的功能电子聚合物机械性能的领导者。美国国立卫生研究院院长的新创新者奖将推动我的团队朝着我的研究长期目标前进:设计专门用于健康科学的软电子材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Darren J Lipomi其他文献
Darren J Lipomi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Darren J Lipomi', 18)}}的其他基金
Platform for high-throughput biomechanical measurements using metallic islands on boron nitride nanosheets
使用氮化硼纳米片上的金属岛进行高通量生物力学测量的平台
- 批准号:
10158533 - 财政年份:2020
- 资助金额:
$ 219.33万 - 项目类别:
Stretchable, Biodegradable, and Self-Healing Semiconductors for Wearable and Implantable Sensors
用于可穿戴和植入式传感器的可拉伸、可生物降解和自我修复的半导体
- 批准号:
9980002 - 财政年份:2015
- 资助金额:
$ 219.33万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 219.33万 - 项目类别:
Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 219.33万 - 项目类别:
Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 219.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 219.33万 - 项目类别:
Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 219.33万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 219.33万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 219.33万 - 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 219.33万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 219.33万 - 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
- 批准号:
2334134 - 财政年份:2023
- 资助金额:
$ 219.33万 - 项目类别:
Standard Grant














{{item.name}}会员




