Stretchable, Biodegradable, and Self-Healing Semiconductors for Wearable and Implantable Sensors

用于可穿戴和植入式传感器的可拉伸、可生物降解和自我修复的半导体

基本信息

  • 批准号:
    9980002
  • 负责人:
  • 金额:
    $ 47.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-30 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This project aims to create a new class of semiconducting polymers for applications in wearable and implantable healthcare that-in contrast to all other research on "electronic skin"-will actually have properties inspired by biological tissue: extreme elasticity, biodegradability, and the ability to self-heal. The goal of organic bioelectronics is to detect and treat disease by using signal transducers based on organic conductors and semiconductors in wearable and implantable devices. Except for the carbon framework of these otherwise versatile materials, they have essentially no properties in common with biological tissue: electronic polymers are typically stiff and brittle, and do not degrade under physiological conditions. Seamless integration with soft, biodegradable, and self-healing tissue has thus not yet been realized. In Phase I of this project, we will develop a modular synthetic methodology based on segmented polymerization of semiconducting segments and biodegradable elastomeric segments. Phase II will characterize the properties of this new class of materials, which will be the first polymeric semiconductors to have the mechanical properties of human tissue, the first known semiconductors capable of self-repair, and the first organic semiconductors that can degrade under physiological conditions into biocompatible byproducts, which will be established in a rat model. Phase III will use the synthetic materials as transducers of chemical, biomolecular, mechanical, and electrical signals in several modalities as proof-of-concept devices, including skin-like pressure sensors for instrumented prostheses, biochemical sensors for wearable health monitors, and photodetectors for artificial retinas. Phase III will culminate in the demonstration of an implantable epidural pressure sensor for continuous monitoring of intracranial pressure (ICP). The long-term goal of this research is to endow these devices with the capability of wireless power and telemetry. The strength of the proposal is its vertically integrated strategy that combines molecular engineering and synthetic chemistry with determination of biodegradability and biocompatibility, the fabrication of devices, and their use in detecting physiological signals relevant to a range of diseases. The proposed research will build on my documented experience executing and directing projects in an especially broad range of topics: total synthesis of medicinally active compounds, micro- and nanofabrication of electronic devices, and development of stretchable materials and skin-like sensors for applications in implantable health monitoring. I coined the term "Molecularly Stretchable Electronics" to describe the research of my group, which is becoming internationally recognized as a leader in the mechanical properties of functional electronic polymers. The NIH Director's New Innovator Award would jumpstart my group's progress toward the long-term goal of my research: designing soft electronic materials specifically for applications in the health sciences.
描述(由申请人提供):该项目旨在创建一类新的半导体聚合物,用于在可穿戴和可植入的医疗保健中应用,与所有其他关于“电子皮肤”的研究形成鲜明对比 - 实际上具有生物组织启发的特性:极端弹性,生物降解性,生物降解性,以及自我亲密的能力。有机生物电子学的目的是通过在可穿戴和可植入的设备中使用基于有机导体和半导体的信号传感器来检测和治疗疾病。除了这些原本用途材料的碳框架外,它们基本上没有与生物组织的共同特性:电子聚合物通常僵硬且脆性,并且在生理条件下不会降解。因此,尚未实现与柔软,可生物降解和自我修复组织的无缝集成。在该项目的第一阶段,我们将基于半导体段和可生物降解的弹性段的分段聚合基于分段的聚合。第二阶段将表征这种新型材料的特性,这将是具有人体组织机械性能的第一个聚合物半导体,是人类组织的机械性能,第一个已知的能够自我修复的半导体,以及可以在生物相容性的副产品中降低生理条件下的第一个有机物半导体,该生理条件将建立在大鼠模型中。第三阶段将使用多种方式的化学,生物分子,机械和电信号的化学材料作为概念验证设备,包括仪器假体的皮肤样压力传感器,可穿戴健康监测器的生化传感器,以及用于人造vertotinas的光电探测器。第三阶段将在植入植入性硬膜外压力传感器的演示中达到顶峰,以连续监测颅内压(ICP)。这项研究的长期目标是赋予这些设备具有无线功率和遥测能力。该提案的强度是其垂直整合的策略,该策略将分子工程和合成化学与确定生物降解性和生物相容性,设备的制造以及它们在检测与一系列疾病相关的生理信号中的使用相结合。拟议的研究将基于我在特别广泛的主题中执行和指导项目的经验:完全合成具有药物活性化合物的总合成,电子设备的微型和纳米化,以及开发可伸展的材料和类似皮肤的传感器,以用于植入可植入的健康监测。我创造了“分子可拉伸电子设备”一词来描述我的小组的研究,该研究正被国际公认为是功能电子聚合物机械性能的领导者。 NIH导演的新创新者奖将使我小组的进步朝着我的研究的长期目标:设计专门针对健康科学应用的软电子材料。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ionotactile Stimulation: Nonvolatile Ionic Gels for Human-Machine Interfaces.
  • DOI:
    10.1021/acsomega.7b01773
  • 发表时间:
    2018-01-31
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Root SE;Carpenter CW;Kayser LV;Rodriquez D;Davies DM;Wang S;Tan STM;Meng YS;Lipomi DJ
  • 通讯作者:
    Lipomi DJ
The Language of Glove: Wireless gesture decoder with low-power and stretchable hybrid electronics.
  • DOI:
    10.1371/journal.pone.0179766
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    O'Connor TF;Fach ME;Miller R;Root SE;Mercier PP;Lipomi DJ
  • 通讯作者:
    Lipomi DJ
Organic Haptics: Intersection of Materials Chemistry and Tactile Perception
  • DOI:
    10.1002/adfm.201906850
  • 发表时间:
    2019-10-29
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Lipomi, Darren J.;Dhong, Charles;Ramachandran, Vilayanur S.
  • 通讯作者:
    Ramachandran, Vilayanur S.
Polymer Chemistry for Haptics, Soft Robotics, and Human–Machine Interfaces
  • DOI:
    10.1002/adfm.202008375
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Steven Schara;R. Blau;Derek C. Church;J. Pokorski;D. Lipomi
  • 通讯作者:
    Steven Schara;R. Blau;Derek C. Church;J. Pokorski;D. Lipomi
Stretchable Conjugated Polymers: A Case Study in Topic Selection for New Research Groups.
  • DOI:
    10.1021/acs.accounts.8b00459
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    18.3
  • 作者:
    Andrew T. Kleinschmidt;D. Lipomi
  • 通讯作者:
    Andrew T. Kleinschmidt;D. Lipomi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Darren J Lipomi其他文献

Darren J Lipomi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Darren J Lipomi', 18)}}的其他基金

Platform for high-throughput biomechanical measurements using metallic islands on boron nitride nanosheets
使用氮化硼纳米片上的金属岛进行高通量生物力学测量的平台
  • 批准号:
    10158533
  • 财政年份:
    2020
  • 资助金额:
    $ 47.25万
  • 项目类别:
Stretchable, Biodegradable, and Self-Healing Semiconductors for Wearable and Implantable Sensors
用于可穿戴和植入式传感器的可拉伸、可生物降解和自我修复的半导体
  • 批准号:
    8954687
  • 财政年份:
    2015
  • 资助金额:
    $ 47.25万
  • 项目类别:

相似国自然基金

藻类微生物燃料电池CO2藻菌协同生化转化及阴极原位耦合光催化捕获
  • 批准号:
    52306222
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SPION与BMP-2磁生化信号耦合靶向新生骨精准改善成骨微环境的研究
  • 批准号:
    82370930
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
耦合生物物理与生化地球化学过程的土地覆被变化多尺度气候效应研究
  • 批准号:
    42371102
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
入核效应蛋白SidW的生化及生物学功能
  • 批准号:
    32370196
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
力信号与生化信号协同调制免疫细胞两个关键界面过程的生物物理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 47.25万
  • 项目类别:
Elucidating the role of nonessential amino acid metabolism in diabetic skin wounds
阐明非必需氨基酸代谢在糖尿病皮肤伤口中的作用
  • 批准号:
    10607579
  • 财政年份:
    2023
  • 资助金额:
    $ 47.25万
  • 项目类别:
Understand Non-canonical RAS Signaling in Clonal Hematopoietic Disorders
了解克隆性造血疾病中的非典型 RAS 信号转导
  • 批准号:
    10571352
  • 财政年份:
    2023
  • 资助金额:
    $ 47.25万
  • 项目类别:
In vivo 2-photon imaging of retinal biochemistry before and after retinal organoid transplantation
视网膜类器官移植前后视网膜生物化学的体内2光子成像
  • 批准号:
    10643273
  • 财政年份:
    2023
  • 资助金额:
    $ 47.25万
  • 项目类别:
Identifying the Molecular Function of the Y-linked Mouse Zinc Finger Proteins ZFY1 and ZFY2
鉴定 Y 连锁小鼠锌指蛋白 ZFY1 和 ZFY2 的分子功能
  • 批准号:
    10749409
  • 财政年份:
    2023
  • 资助金额:
    $ 47.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了