Stretchable, Biodegradable, and Self-Healing Semiconductors for Wearable and Implantable Sensors
用于可穿戴和植入式传感器的可拉伸、可生物降解和自我修复的半导体
基本信息
- 批准号:9980002
- 负责人:
- 金额:$ 47.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AwardBiochemicalBiologicalCarbonChemicalsCoinDevice or Instrument DevelopmentDevicesDiseaseElasticityElectronicsEngineeringGoalsHealthHealth SciencesHealthcareInternationalIntracranial PressureMeasuresMechanicsMethodologyModalityModelingMolecularMonitorPhasePhysiologicalPolymer ChemistryPolymersPropertyProsthesisPrunella vulgarisRattusResearchResearch DesignSemiconductorsSignal TransductionSkinStretchingSynthesis ChemistryTelemetryTissuesToxic effectTransducersTraumatic Brain InjuryUnited States National Institutes of HealthWireless Technologybasebiomaterial compatibilityelastomericexperiencehuman tissueimplantable deviceimplanted sensorinnovationinstrumentlearning materialsmechanical propertiesnanofabricationpolymerizationpressure sensorpreventpublic health relevancerepairedretinal prosthesissensorwearable devicewearable sensor technology
项目摘要
DESCRIPTION (provided by applicant): This project aims to create a new class of semiconducting polymers for applications in wearable and implantable healthcare that-in contrast to all other research on "electronic skin"-will actually have properties inspired by biological tissue: extreme elasticity, biodegradability, and the ability to self-heal. The goal of organic bioelectronics is to detect and treat disease by using signal transducers based on organic conductors and semiconductors in wearable and implantable devices. Except for the carbon framework of these otherwise versatile materials, they have essentially no properties in common with biological tissue: electronic polymers are typically stiff and brittle, and do not degrade under physiological conditions. Seamless integration with soft, biodegradable, and self-healing tissue has thus not yet been realized. In Phase I of this project, we will develop a modular synthetic methodology based on segmented polymerization of semiconducting segments and biodegradable elastomeric segments. Phase II will characterize the properties of this new class of materials, which will be the first polymeric semiconductors to have the mechanical properties of human tissue, the first known semiconductors capable of self-repair, and the first organic semiconductors that can degrade under physiological conditions into biocompatible byproducts, which will be established in a rat model. Phase III will use the synthetic materials as transducers of chemical, biomolecular, mechanical, and electrical signals in several modalities as proof-of-concept devices, including skin-like pressure sensors for instrumented prostheses, biochemical sensors for wearable health monitors, and photodetectors for artificial retinas. Phase III will culminate in the demonstration of an implantable epidural pressure sensor for continuous monitoring of intracranial pressure (ICP). The long-term goal of this research is to endow these devices with the capability of wireless power and telemetry. The strength of the proposal is its vertically integrated strategy that combines molecular engineering and synthetic chemistry with determination of biodegradability and biocompatibility, the fabrication of devices, and their use in detecting physiological signals relevant to a range of diseases. The proposed research will build on my documented experience executing and directing projects in an especially broad range of topics: total synthesis of medicinally active compounds, micro- and nanofabrication of electronic devices, and development of stretchable materials and skin-like sensors for applications in implantable health monitoring. I coined the term "Molecularly Stretchable Electronics" to describe the research of my group, which is becoming internationally recognized as a leader in the mechanical properties of functional electronic polymers. The NIH Director's New Innovator Award would jumpstart my group's progress toward the long-term goal of my research: designing soft electronic materials specifically for applications in the health sciences.
描述(由申请人提供):该项目旨在创造一种新型半导体聚合物,用于可穿戴和植入式医疗保健,与所有其他关于“电子皮肤”的研究不同,这种聚合物实际上将具有受生物组织启发的特性:极端弹性、生物降解性和自我修复能力。有机生物电子学的目标是通过在可穿戴和可植入设备中使用基于有机导体和半导体的信号换能器来检测和治疗疾病。除了这些多功能材料的碳骨架外,它们基本上与生物组织没有共同的性质:电子聚合物通常是僵硬和脆性的,在生理条件下不会降解。因此,与柔软、可生物降解和自我修复的组织的无缝集成尚未实现。在这个项目的第一阶段,我们将开发一种基于半导体链段和可生物降解弹性体链段的分段聚合的模块化合成方法。第二阶段将表征这类新材料的性质,这将是第一批具有人类组织机械性能的聚合物半导体,第一批已知的能够自我修复的半导体,以及第一批在生理条件下可以降解为生物相容副产品的有机半导体,这将在大鼠模型中建立。第三阶段将使用合成材料作为化学、生物分子、机械和电信号的传感器,以几种形式作为概念验证设备,包括用于仪表式假肢的皮肤压力传感器,用于可穿戴健康监测器的生化传感器,以及用于人造视网膜的光电探测器。第三阶段将最终展示一种用于持续监测颅内压的植入式硬膜外压力传感器。这项研究的长期目标是赋予这些设备无线供电和遥测的能力。该提案的优势在于其垂直整合的战略,将分子工程和合成化学与生物降解性和生物兼容性的确定、设备的制造以及它们在检测与一系列疾病相关的生理信号中的使用相结合。拟议的研究将建立在我执行和指导特别广泛的主题的项目的记录经验的基础上:药物活性化合物的全合成,电子设备的微米和纳米制造,以及可伸缩材料和皮肤状传感器的开发,用于植入式健康监测。我创造了“分子可伸展电子学”这个词来描述我的团队的研究,该团队正在成为国际上公认的功能性电子聚合物机械性能的领导者。美国国立卫生研究院院长的新创新者奖将推动我的团队朝着我研究的长期目标前进:专门为健康科学应用设计软电子材料。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ionotactile Stimulation: Nonvolatile Ionic Gels for Human-Machine Interfaces.
- DOI:10.1021/acsomega.7b01773
- 发表时间:2018-01-31
- 期刊:
- 影响因子:4.1
- 作者:Root SE;Carpenter CW;Kayser LV;Rodriquez D;Davies DM;Wang S;Tan STM;Meng YS;Lipomi DJ
- 通讯作者:Lipomi DJ
The Language of Glove: Wireless gesture decoder with low-power and stretchable hybrid electronics.
- DOI:10.1371/journal.pone.0179766
- 发表时间:2017
- 期刊:
- 影响因子:3.7
- 作者:O'Connor TF;Fach ME;Miller R;Root SE;Mercier PP;Lipomi DJ
- 通讯作者:Lipomi DJ
Organic Haptics: Intersection of Materials Chemistry and Tactile Perception
- DOI:10.1002/adfm.201906850
- 发表时间:2019-10-29
- 期刊:
- 影响因子:19
- 作者:Lipomi, Darren J.;Dhong, Charles;Ramachandran, Vilayanur S.
- 通讯作者:Ramachandran, Vilayanur S.
Single-Nanowire Strain Sensors Fabricated by Nanoskiving.
纳米肯制造的单纳米线应变传感器。
- DOI:10.1016/j.sna.2017.07.046
- 发表时间:2017-08-15
- 期刊:
- 影响因子:0
- 作者:Jibril L;Ramírez J;Zaretski AV;Lipomi DJ
- 通讯作者:Lipomi DJ
Stretchable Conjugated Polymers: A Case Study in Topic Selection for New Research Groups.
- DOI:10.1021/acs.accounts.8b00459
- 发表时间:2018-12
- 期刊:
- 影响因子:18.3
- 作者:Andrew T. Kleinschmidt;D. Lipomi
- 通讯作者:Andrew T. Kleinschmidt;D. Lipomi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Darren J Lipomi其他文献
Darren J Lipomi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Darren J Lipomi', 18)}}的其他基金
Platform for high-throughput biomechanical measurements using metallic islands on boron nitride nanosheets
使用氮化硼纳米片上的金属岛进行高通量生物力学测量的平台
- 批准号:
10158533 - 财政年份:2020
- 资助金额:
$ 47.25万 - 项目类别:
Stretchable, Biodegradable, and Self-Healing Semiconductors for Wearable and Implantable Sensors
用于可穿戴和植入式传感器的可拉伸、可生物降解和自我修复的半导体
- 批准号:
8954687 - 财政年份:2015
- 资助金额:
$ 47.25万 - 项目类别:
相似海外基金
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
- 批准号:
23K14138 - 财政年份:2023
- 资助金额:
$ 47.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analytical validation of a biochemical test for alpha-synuclein aggregates in biological fluids for the diagnosis of Parkinson's Disease
用于诊断帕金森病的生物体液中 α-突触核蛋白聚集体的生化测试的分析验证
- 批准号:
10396678 - 财政年份:2021
- 资助金额:
$ 47.25万 - 项目类别:
Analytical validation of a biochemical test for alpha-synuclein aggregates in biological fluids for the diagnosis of Parkinson's Disease
用于诊断帕金森病的生物体液中 α-突触核蛋白聚集体的生化测试的分析验证
- 批准号:
10361903 - 财政年份:2021
- 资助金额:
$ 47.25万 - 项目类别:
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
- 批准号:
10248476 - 财政年份:2019
- 资助金额:
$ 47.25万 - 项目类别:
Shining a light on dense granules- biochemical, genetic and cell biological investigation of an essential but understudied compartment in malarial -
揭示致密颗粒——对疟疾中一个重要但尚未充分研究的隔室进行生化、遗传和细胞生物学研究——
- 批准号:
2243093 - 财政年份:2019
- 资助金额:
$ 47.25万 - 项目类别:
Studentship
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
- 批准号:
10687856 - 财政年份:2019
- 资助金额:
$ 47.25万 - 项目类别:
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
- 批准号:
10005386 - 财政年份:2019
- 资助金额:
$ 47.25万 - 项目类别:
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
- 批准号:
10480082 - 财政年份:2019
- 资助金额:
$ 47.25万 - 项目类别:
Investigation into the biochemical and biological effects of air pollution on the function of human skin and the intervention of such effects
空气污染对人体皮肤功能的生化、生物学影响及其干预研究
- 批准号:
2314361 - 财政年份:2018
- 资助金额:
$ 47.25万 - 项目类别:
Studentship
Investigation into the biochemical and biological effects of air pollution on the function of human skin and the intervention of such effects
空气污染对人体皮肤功能的生化、生物学影响及其干预研究
- 批准号:
BB/S506837/1 - 财政年份:2018
- 资助金额:
$ 47.25万 - 项目类别:
Training Grant














{{item.name}}会员




