High-resolution multimodal imaging of episodic memory networks in aging.

衰老过程中情景记忆网络的高分辨率多模态成像。

基本信息

项目摘要

DESCRIPTION (provided by applicant): The training and research plan proposed in this Pathway to Independence Award will propel the candidate to become an independent scientist in a tenure-track position at a research university. This award will support her investigation of novel questions regarding structural connectivity of neural networks that subserve episodic memory across the lifespan. She will be introduced to high-resolution multimodal neuroimaging and will receive training in corresponding advanced MRI and multivariate analysis techniques. The candidate's expertise in neurocognitive aging research will also be strengthened by the proposal's focus on component processes of episodic memory (i.e., pattern separation), the neural networks that support these processes, and how they are affected in both healthy aging and in individuals at increased risk for dementia. Importantly, this award will prepare the candidate to submit a major research proposal (e.g., R01) at an earlier stage in her career that would be possible otherwise. Environment. The University of California, Irvine (UCI) offers a unique array of training and development resources to facilitate the candidate advancing to an independent scientist position. These include a collaborative group of distinguished researchers at the Center for the Neurobiology of Learning and Memory (CNLM) dedicated to understanding neural mechanisms that support memory, an exceptional mentor (Dr. Craig Stark, Director of the CNLM) and co-mentor (Dr. Claudia Kawas, Clinical Core director of the UCI Institute for Memory Impairments and Neurological Disorders) whose pioneering research programs laid the foundation for the current proposal, access to state-of-the-art research and neuroimaging facilities, and a variety of courses and workshops that will accelerate both educational and career development throughout the duration of this award. Research. The central aim of the current proposal is to investigate neural networks of pattern separation, a component process of episodic memory, across the life span using behavioral and high- resolution multimodal neuroimaging techniques. Episodic memory decline is a hallmark feature of healthy aging and age-related cognitive disorders such as amnestic mild cognitive impairment and Alzheimer's disease. Further detailing the neural mechanisms that support component processes of episodic memory may facilitate identification of neural markers associated with cognitive aging, and inform cognitive and neural interventions aimed at promoting successful aging. Episodic memory is a complex mnemonic ability that involves encoding and retrieval of discrete events, including details such as what, where, and when an event occurred. Successful encoding of new information requires that similar events get separated into distinct memory representations. This process, termed pattern separation, is known to rely on medial temporal lobe (MTL) subregions. However, neuroimaging studies have shown that prefrontal cortex (PFC) and striatum are also engaged during episodic memory performance. Whereas these distributed brain regions are frequently studied in isolation, a comprehensive understanding of the neural substrates of episodic memory in general, and pattern separation in particular, will require knowledge of how they interact as interconnected neural networks. In the mentored phase of this award, high-resolution diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) will be used to identify more accurate models of MTL (Specific Aim 1) and striatal (Specific Aim 2) connectivity across the human lifespan than has been previously acquired in vivo. Expanding on our earlier work with the perforate path, the proposed study will assess the contribution of local tracts connecting MTL subregions (e.g., perforate path, mossy fibers, and schaffer collaterals) and large-scale tracts connecting MTL to PFC (e.g., fornix, cingulum) to pattern separation performance in healthy adults. It will also be the first to examine integrity of tracts connecting striatum to PFC (e.g., caudate-PFC, putamen-motor) in relation to these mnemonic processes. The independent phase of this award will assess interactions and dissociations between MTL and striatal memory systems, which are frequently regarded as being differentially affected by healthy and pathological aging. We will test the hypotheses that degradation of striatal versus MTL tract integrity accounts for pattern separation declines in healthy older versus younger adults (Specific Aim 2) and that degradation of MTL versus striatal tract connectivity accounts for pattern separation declines in oldest- old versus younger-old adults (Specific Aim 3). These data will directly test cortical disconnection theories, which propose that diminished white matter connectivity accounts for cognitive declines associated with aging.
描述(由申请人提供):在这个独立之路奖提出的培训和研究计划将推动候选人成为一个独立的科学家在研究型大学的终身职位。该奖项将支持她对有关神经网络结构连接的新问题的研究,这些问题有助于整个生命周期的情景记忆。她将被介绍给高分辨率多模态神经成像,并将接受相应的先进MRI和多变量分析技术的培训。候选人在神经认知衰老研究方面的专业知识也将通过该提案对情景记忆组成过程的关注而得到加强(即,模式分离),支持这些过程的神经网络,以及它们在健康老龄化和痴呆症风险增加的个体中如何受到影响。重要的是,这个奖项将准备候选人提交一个重大的研究计划(例如,R 01)在她职业生涯的早期阶段,否则是可能的。 环境加州大学欧文分校(UCI)提供了一系列独特的培训和发展资源,以促进候选人晋升为独立科学家。其中包括一个由学习和记忆神经生物学中心(CNLM)的杰出研究人员组成的合作小组,他们致力于了解支持记忆的神经机制,(克雷格斯塔克博士,CNLM主任)和共同导师(克劳迪娅·卡瓦斯博士,UCI记忆障碍和神经障碍研究所临床核心主任)其开创性的研究项目为当前的提案奠定了基础,获得了最先进的研究和神经成像设施,以及各种课程和研讨会,这些课程和研讨会将在整个奖项期间加速教育和职业发展。 Research.目前建议的中心目标是使用行为和高分辨率多模态神经成像技术在整个生命周期中研究模式分离的神经网络,这是情景记忆的一个组成过程。情景记忆衰退是健康老龄化和与年龄相关的认知障碍如遗忘性轻度认知障碍和阿尔茨海默病的标志性特征。进一步详细说明支持情景记忆组成过程的神经机制可能有助于识别与认知老化相关的神经标志物,并为旨在促进成功老化的认知和神经干预提供信息。情节记忆是一种复杂的记忆能力,涉及离散事件的编码和检索,包括事件发生的细节,如什么,在哪里和什么时候。新信息的成功编码要求相似的事件被分离成不同的记忆表征。这个过程称为模式分离,已知依赖于内侧颞叶(MTL)子区域。然而,神经影像学研究表明,前额叶皮层(PFC)和纹状体也参与情节记忆的表现。虽然这些分散的大脑区域经常被孤立地研究,但要全面了解情景记忆的神经基础,特别是模式分离,就需要了解它们如何作为相互连接的神经网络相互作用。在该奖项的指导阶段,高分辨率弥散张量成像(DTI)和功能性磁共振成像(fMRI)将用于识别人类寿命期间MTL(特定目标1)和纹状体(特定目标2)连接的更准确模型,而不是以前在体内获得的模型。在我们早期的研究工作的基础上,拟议的研究将评估连接MTL次区域的地方区域的贡献(例如,纤维束、苔藓纤维和谢弗侧支)和连接MTL与PFC的大规模纤维束(例如,穹窿、扣带回)与正常成人的模式分离性能之间的关系。它也将是第一个检查 连接纹状体与PFC的束的完整性(例如,尾状核-PFC,壳核-运动)与这些记忆过程的关系。该奖项的独立阶段将评估MTL和纹状体记忆系统之间的相互作用和解离,这些系统通常被认为受到健康和病理性衰老的不同影响。我们将检验以下假设:纹状体与MTL束完整性的退化解释了健康老年人与年轻人的模式分离下降(具体目标2),MTL与纹状体束连接性的退化解释了最老老年人与更老老年人的模式分离下降(具体目标3)。这些数据将直接检验皮层断开理论,该理论提出,白色物质连接的减少是与衰老相关的认知能力下降的原因。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ilana Jacqueline Bennett其他文献

Ilana Jacqueline Bennett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ilana Jacqueline Bennett', 18)}}的其他基金

MRI biomarkers of glial-specific metabolites and microstructure in aging
衰老过程中神经胶质特异性代谢物和微观结构的 MRI 生物标志物
  • 批准号:
    10742593
  • 财政年份:
    2023
  • 资助金额:
    $ 10.56万
  • 项目类别:
High-resolution multimodal imaging of episodic memory networks in aging.
衰老过程中情景记忆网络的高分辨率多模态成像。
  • 批准号:
    9352898
  • 财政年份:
    2016
  • 资助金额:
    $ 10.56万
  • 项目类别:
High-resolution multimodal imaging of episodic memory networks in aging.
衰老过程中情景记忆网络的高分辨率多模态成像。
  • 批准号:
    9354258
  • 财政年份:
    2016
  • 资助金额:
    $ 10.56万
  • 项目类别:
The role of white matter integrity in the neural efficiency hypothesis of cogniti
白质完整性在认知神经效率假说中的作用
  • 批准号:
    8060228
  • 财政年份:
    2010
  • 资助金额:
    $ 10.56万
  • 项目类别:
The role of white matter integrity in neural efficiency and cognitive aging
白质完整性在神经效率和认知衰老中的作用
  • 批准号:
    8210353
  • 财政年份:
    2010
  • 资助金额:
    $ 10.56万
  • 项目类别:
Aging, implicit learning, and white matter integrity
衰老、内隐学习和白质完整性
  • 批准号:
    7637355
  • 财政年份:
    2007
  • 资助金额:
    $ 10.56万
  • 项目类别:
Aging, implicit learning, and white matter integrity
衰老、内隐学习和白质完整性
  • 批准号:
    7330885
  • 财政年份:
    2007
  • 资助金额:
    $ 10.56万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了