Super-resolution of the Mechanisms of Cell Shape Change in Cytokinesis - the Zeiss LSM800/Airyscan
细胞分裂过程中细胞形状变化机制的超分辨率 - Zeiss LSM800/Airyscan
基本信息
- 批准号:9027120
- 负责人:
- 金额:$ 7.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-21 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingActinsActomyosinAdverse effectsAneuploidyAnimal ModelAntineoplastic AgentsApoptosisBehaviorBiological AssayBiological ModelsBiomechanicsBiophysical ProcessBundlingCaenorhabditis elegansCell Cycle ProteinsCell ShapeCell divisionCell membraneCellsChimeric ProteinsClinicCollaborationsComplexComputer SimulationCoupledCytokinesisCytoskeletal FilamentsCytoskeletonDataDevelopmentDrug TargetingEventF-ActinFailureFeedbackFilamentGastrointestinal tract structureGeometryGoalsHuman bodyImage AnalysisInterphase CellKineticsLaboratoriesLifeMalignant NeoplasmsMammalsMeasuresMechanicsMembraneMethodsMicroscopyMitoticModelingMolecularMothersMyosin ATPaseNatureOrganellesPathologyPersonsPharmaceutical PreparationsPhylogenyPositioning AttributeProcessProteinsRegulationResolutionRoleShapesSkinSlideStructural ProteinTetraploidyTimeTissuesUncertaintyUnited States National Institutes of HealthWorkbasecancer cellconstrictiondaughter cellinnovationinsightinterdisciplinary approachnovelprotein functionquantitative imagingsingle moleculesuccesstumorzygote
项目摘要
Cytokinesis, the physical division of one cell into two, is accomplished by a transient
organelle called the contractile ring. The PI is focused on the molecular and biophysical
mechanisms of contractile ring function. Ongoing work in the PI's laboratory has yielded an
explanation of asymmetric (non-concentric) ring closure, which is seen throughout metazoa. To
explain this asymmetry, a biomechanical feedback loop was proposed, among cytoskeletal
filament alignment, filament sliding, and membrane curvature. An in silico model based on this
feedback can recapitulate ring closure asymmetry, as well as the kinetics of closure initiation
and duration in the C. elegans zygote, the primary animal model for this work.
To expand and strengthen this model, the proposed work aims to define the molecular and
physical mechanisms of each component of the feedback loop. Specifically, the conserved
proteins that contribute to alignment of cytoskeletal filaments with each other and with the
membrane will be defined. The existence of myosin in the form of bipolar minifilaments in the
contractile ring will be defined. Last, the shape of the cell throughout cytokinesis will be
described and correlated with local protein enrichment and organization.
The proposal centers on the use of three dimensional live-cell (time-lapse) microscopy and
quantitative image analysis. Several novel quantitative assays for contractile ring assembly,
organization and function will be used. These include ways to measure F-actin alignment,
kinetics and position of ring closure throughout cytokinesis, the number of molecules in
macromolecular cortical complexes, and the three-dimensional shape of the cell during the
course of division. The C. elegans zygote serves as an ideal model system for these studies
due to its reproducible size, shape, and the kinetics of cell division events, the ease of thorough
depletion of essential proteins, the ability to examine the first cell division attempted following
protein depletion, and the availability of strains stably expressing fluorescent fusion proteins that
serve as markers for various subcellular components and compartments. Importantly, cell cycle
regulatory and structural proteins are conserved among C. elegans and mammals.
The long-term goal of this work is to aid the development of anti-cancer chemotherapeutics
that block cytokinesis. Targeting proteins that act specifically in the contractile ring should avoid
the side effects on non-dividing cells of many popular drugs. In addition, because currently used
anti-mitotics also have limited success against some tumor types, development of cytokinesis
drugs will be a welcome expansion and diversification of our arsenal against cancers.
细胞质分裂,即一个细胞分裂成两个细胞的物理过程,是由短暂的细胞分裂完成的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Shaub Maddox其他文献
Deconstructing cytokinesis
细胞分裂的解构
- DOI:
10.1038/ncb0903-773b - 发表时间:
2003-09-01 - 期刊:
- 影响因子:19.100
- 作者:
Amy Shaub Maddox;Karen Oegema - 通讯作者:
Karen Oegema
Lessons on the force-form-function connection in cell biology from modeling a syncytial germline
通过对合胞生殖细胞系进行建模来学习细胞生物学中的力-形式-功能连接
- DOI:
10.1016/j.ceb.2025.102465 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:4.300
- 作者:
John B. Linehan;Michael E. Werner;Amy Shaub Maddox - 通讯作者:
Amy Shaub Maddox
Amy Shaub Maddox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Shaub Maddox', 18)}}的其他基金
Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
- 批准号:
10748207 - 财政年份:2022
- 资助金额:
$ 7.31万 - 项目类别:
Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
- 批准号:
10330865 - 财政年份:2022
- 资助金额:
$ 7.31万 - 项目类别:
Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
- 批准号:
10544504 - 财政年份:2022
- 资助金额:
$ 7.31万 - 项目类别:
Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
- 批准号:
10582156 - 财政年份:2022
- 资助金额:
$ 7.31万 - 项目类别:
Molecular mechanisms of cell shape change in cytokinesis
胞质分裂过程中细胞形状变化的分子机制
- 批准号:
8693096 - 财政年份:2013
- 资助金额:
$ 7.31万 - 项目类别:
Molecular mechanisms of cell shape change in cytokinesis
胞质分裂过程中细胞形状变化的分子机制
- 批准号:
8549132 - 财政年份:2012
- 资助金额:
$ 7.31万 - 项目类别:
Molecular mechanisms of cell shape change in cytokinesis
胞质分裂过程中细胞形态变化的分子机制
- 批准号:
9132813 - 财政年份:2012
- 资助金额:
$ 7.31万 - 项目类别:
Molecular mechanisms of cell shape change in cytokinesis
胞质分裂过程中细胞形状变化的分子机制
- 批准号:
8739663 - 财政年份:2012
- 资助金额:
$ 7.31万 - 项目类别:
Molecular mechanisms of cell shape change in cytokinesis
胞质分裂过程中细胞形状变化的分子机制
- 批准号:
8348652 - 财政年份:2012
- 资助金额:
$ 7.31万 - 项目类别:
Determining the working unit of myosin in the cytokinetic ring
确定细胞因子环中肌球蛋白的工作单位
- 批准号:
9189173 - 财政年份:2012
- 资助金额:
$ 7.31万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 7.31万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 7.31万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 7.31万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 7.31万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 7.31万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 7.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 7.31万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 7.31万 - 项目类别: