Protein architecture and enzyme dynamics on timescales from fs to ms.
从 fs 到 ms 时间尺度上的蛋白质结构和酶动力学。
基本信息
- 批准号:8906879
- 负责人:
- 金额:$ 48.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectArchitectureBindingCatalysisCatalytic DomainChemistryCollaborationsComplexCoupledCouplingDependenceDetectionDevelopmentDevicesDihydrofolate ReductaseEnzymesEquilibriumFluorescenceGenetic AnticipationGoalsHydrogen BondingImageIsotope LabelingIsotopesLabelLaboratoriesLactate DehydrogenaseMeasurementMeasuresMethodsMicrofluidicsModelingMotionMutationNucleic AcidsOrganismPathway interactionsPharmaceutical PreparationsPopulationPositioning AttributeProductionProtein DynamicsProteinsProtonsPumpPurine-Nucleoside PhosphorylaseReactionResearchRoleShapesSolutionsSolventsSpecificitySpectrum AnalysisStructural ProteinStructureSystemTemperatureTestingTimeWaterWorkbasedesigndrug developmentenzyme activityimprovedinfrared spectroscopyinhibitor/antagonistinnovationmillisecondmutantnovel strategiesprogramsprotein structureprotonationresearch studysmall moleculetheories
项目摘要
This project will elucidate the role of protein dynamics in enzyme function on all time scales, with the overall
goal of developing enzyme design principles based on dynamics. We have pioneered new approaches to
elucidate enzyme dynamics using structurally specific approaches, including isotope edited infrared
spectroscopy coupled with ultrafast reaction initiation (T-jump or pH jump) and with fast microfluidics mixing
methods. On the femtosecond time scale, we seek a deeper understanding of the fast atomic motions
required to move the system over the transition barrier to achieve chemistry. On slower time scales (ps -
ms) we seek to elucidate the conformational changes associated with substrate binding, catalytic site
reorganization and product release. We focus on three enzymes, dihydrofolate reductase (DHFR) and in
close collaboration with the Callender and Schramm labs respectively, lactate dehydrogenase (LDH) and
purine nucleoside phosphorylase (PNP). The work is supported by theory and computation in the Schwartz
group. The project has three specific aims: (1) Determine the conformational dynamics that control DHFR
catalytic activity. This aim will test the hypothesis that the conformational dynamics of the Met20 loop act as
a master control of DHFR activity by modulating the barriers to proton and hydride transfer. We will
determine the effects of mutations discovered in our lab that perturb the H-bonding network on the proton
transfer dynamics and any coupled protein dynamics, using pH jump methods and time-resolved IR
spectroscopy. (2) Determine the protein structural dynamics that control the formation of the Michaelis
complex in LDH. This aim will test the hypothesis that the Michaelis sub-state distribution and catalytic
efficiency of LDH are controlled by the energy landscape of the catalytically important loop motions. We plan
to determine how these loop motions are related to the sub-state distribution and the extent to which the
protein conformational distribution is collapsed in the observed sub-states using ultrafast mixing, coupled
with T-jump experiments in the Callender lab. Calculations by the Schwartz group will identify the dominant
Michaelis configurations and measure the dynamics of transitions between them. These calculations will
enable the interpretation of the dynamics observed in our experiments. (3) Investigate the relationships
between protein structural dynamics, pathways for energy flow and allostery in enzymes. This aim will test
the hypothesis that allostery requires pathways for energy flow to reach a specific target that depend on the
protein structure and its dynamics. We have developed ultrafast, pump-probe IR spectroscopy to probe the
specific pathways of energy flow in enzymes. We will apply these methods to characterize the dynamics of
energy flow in DHFR, LDH and PNP, and how it depends on inhibitor binding and the distribution of the
conformational sub-states of the enzymes. We expect tight binding dynamic inhibitors to have very different
energy flow dynamics than less efficient inhibitors that cause conformational collapse.
这个项目将在所有时间尺度上阐明蛋白质动力学在酶功能中的作用,总体上
开发基于动力学的酶设计原理的目标。我们已经开创了新的方法来
使用结构特异性方法,包括同位素编辑红外,来阐明酶的动力学
光谱与超快反应引发(T跳跃或pH跳跃)和快速微流控混合的耦合
方法:研究方法。在飞秒时间尺度上,我们寻求对快速原子运动的更深层次的理解
使系统越过过渡势垒以实现化学作用所需的。在较慢的时间尺度上(PS-
MS)我们试图阐明与底物结合、催化位置相关的构象变化
重组和产品发布。我们专注于三种酶,二氢叶酸还原酶(DHFR)和In
分别与Callender和Schramm实验室密切合作,乳酸脱氢酶(LDH)和
嘌呤核苷磷酸化酶(PNP)。这项工作得到了施瓦茨的理论和计算的支持
一群人。该项目有三个具体目标:(1)确定控制DHFR的构象动力学
催化活性。这一目标将检验Met20环的构象动力学作为
通过调节质子和氢化物转移的障碍来控制dhfr的活性。我们会
确定在我们实验室中发现的扰乱质子氢键网络的突变的影响
利用pH跃迁方法和时间分辨红外光谱研究转移动力学和任何偶联蛋白质动力学
光谱学。(2)确定控制米氏形成的蛋白质结构动力学
乳酸脱氢酶复合体。这一目标将检验米氏亚态分布和催化的假设
LDH的效率由催化重要的环路运动的能量景观控制。我们计划
为了确定这些环路运动与子状态分布的关系,以及
蛋白质的构象分布在观察到的亚态中利用超快混合,耦合
在卡伦德实验室进行T-JUMP实验。施瓦茨小组的计算将确定主导的
Michaelis构型,并测量它们之间转换的动态。这些计算将
使我们能够解释在实验中观察到的动力学。(3)调查关系
在蛋白质结构动力学、能量流动途径和酶的变构之间。这一目标将考验
变构需要能量流到达特定目标的路径的假设取决于
蛋白质结构及其动力学。我们已经开发了超快、泵浦-探测红外光谱来探测
酶中能量流动的特定路径。我们将应用这些方法来描述
DHFR、LDH和PNP中的能量流动以及它如何依赖于抑制剂的结合和分布
酶的构象亚态。我们预计紧密结合的动态抑制剂将有非常不同的
能量流动动力学比导致构象崩塌的低效抑制剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD BRIAN DYER其他文献
RICHARD BRIAN DYER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD BRIAN DYER', 18)}}的其他基金
Proton Transfer Dynamics in Heme-Copper Oxidases
血红素铜氧化酶中的质子转移动力学
- 批准号:
6893238 - 财政年份:2004
- 资助金额:
$ 48.26万 - 项目类别:
Administrative Supplement: Early Events in Protein Folding
行政补充:蛋白质折叠的早期事件
- 批准号:
10387732 - 财政年份:1996
- 资助金额:
$ 48.26万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 48.26万 - 项目类别:
Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 48.26万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 48.26万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 48.26万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 48.26万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 48.26万 - 项目类别:
Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 48.26万 - 项目类别:
Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 48.26万 - 项目类别:
Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 48.26万 - 项目类别:
Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 48.26万 - 项目类别:
Standard Grant