Calibrated Methods for Quantitative PET/CT Imaging Phase II

定量 PET/CT 成像第二阶段的校准方法

基本信息

  • 批准号:
    8979242
  • 负责人:
  • 金额:
    $ 74.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-05-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The overall goal of this Phase II STTR proposal is to develop a PET/CT imaging tool that will help accelerate the development of effective cancer therapies by improving the utility of oncology trials using PET imaging. The growing cost, time, and complexity of clinical trials are driving patient and pharmaceutical company demand for more objective, efficient, and accurate methods to assess the efficacy of therapeutic agents. PET/CT imaging has the potential to provide a quantitative and early assessment of drug response at a molecular level However, PET/CT use as a biomarker and response endpoint in clinical trials is limited. Key factors impeding the incorporation of PET into clinical trials are:the considerable variability in imaging methods across centers, the inconsistency in quantitative measures arising from different sites, and the variable and non-optimal methods for image analysis. In our Phase I work, we developed calibrated quantitative analysis tools that directly support improved quantitative accuracy in clinical trials using PET/CT imaging. We combined the CT 'pocket phantom', developed by Kitware, with a PET scanner calibration process developed at the University of Washington (UW) that is based on National Institute of Standards and Technology (NIST) traceable calibration sources. We also extended our automated algorithms to detect and measure the phantom, and calculate key PET image characteristics. The Phase I proof-of concept study achieved its specific aims, and in this Phase II submission, we will develop and implement the studies and tools needed to translate our proof-of-concept results to use with human imaging for clinical trials. The end goal of the phase II project is to complete all necessary work to market PET/CT calibration and measurement phantoms and analysis services.
 描述(由申请人提供):该 II 期 STTR 提案的总体目标是开发一种 PET/CT 成像工具,该工具将通过提高使用 PET 成像的肿瘤学试验的实用性来帮助加速有效癌症疗法的开发。临床试验的成本、时间和复杂性不断增加,促使患者和制药公司需要更客观、高效和准确的方法来评估治疗药物的疗效。 PET/CT 成像有潜力在分子水平上提供药物反应的定量和早期评估。然而,PET/CT 在临床试验中作为生物标志物和反应终点的用途是有限的。阻碍PET纳入临床试验的关键因素是:各中心的成像方法存在相当大的差异,不同地点的定量测量不一致,以及图像分析方法的可变性和非最佳性。在我们的第一阶段工作中,我们开发了校准的定量分析工具,可以直接支持使用 PET/CT 成像提高临床试验的定量准确性。我们将 Kitware 开发的 CT“袖珍体模”与华盛顿大学 (UW) 开发的 PET 扫描仪校准流程相结合,该流程基于美国国家标准与技术研究院 (NIST) 可追溯的校准源。我们还扩展了自动化算法来检测和测量体模,并计算关键 PET 图像特征。第一阶段概念验证研究实现了其特定目标,在第二阶段提交中,我们将开发和实施将我们的概念验证结果转化为用于临床试验的人体成像所需的研究和工具。第二阶段项目的最终目标是完成将 PET/CT 校准和测量体模及分析服务推向市场所需的所有工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andinet Asmamaw Enquobahrie其他文献

Andinet Asmamaw Enquobahrie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andinet Asmamaw Enquobahrie', 18)}}的其他基金

Virtual Rotator Cuff Arthroscopic Skill Trainer
虚拟肩袖关节镜技能训练器
  • 批准号:
    10248494
  • 财政年份:
    2019
  • 资助金额:
    $ 74.04万
  • 项目类别:
Imaging biomarkers of severe respiratory infections in premature infants Phase II
早产儿严重呼吸道感染的影像生物标志物 II 期
  • 批准号:
    10491039
  • 财政年份:
    2018
  • 资助金额:
    $ 74.04万
  • 项目类别:
Advanced virtual simulator for real-time ultrasound-guided renal biopsy training
用于实时超声引导肾活检训练的先进虚拟模拟器
  • 批准号:
    9408987
  • 财政年份:
    2017
  • 资助金额:
    $ 74.04万
  • 项目类别:
Image-guided planning system for skull correction in children with craniosynostos
颅缝早闭儿童颅骨矫正的图像引导规划系统
  • 批准号:
    8778815
  • 财政年份:
    2014
  • 资助金额:
    $ 74.04万
  • 项目类别:
Real-time Image Guidance for Improved Orthognathic Surgery
实时图像引导改善正颌手术
  • 批准号:
    8710950
  • 财政年份:
    2014
  • 资助金额:
    $ 74.04万
  • 项目类别:
Robot-assisted prostate surgery using augmented reality with deformable models
使用增强现实和可变形模型进行机器人辅助前列腺手术
  • 批准号:
    8206964
  • 财政年份:
    2011
  • 资助金额:
    $ 74.04万
  • 项目类别:
Approach-specific, multi-GPU, multi-tool, high-realism neurosurgery simulation
特定方法、多 GPU、多工具、高真实感神经外科模拟
  • 批准号:
    8037100
  • 财政年份:
    2010
  • 资助金额:
    $ 74.04万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了