Molecular Physiology of Myotonia and Periodic Paralysis

肌强直和周期性麻痹的分子生理学

基本信息

  • 批准号:
    9108578
  • 负责人:
  • 金额:
    $ 28.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-03-10 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The myotonias and periodic paralyses are heritable diseases of skeletal muscle in which mutations of voltage-gated ion channels alter the electrical excitability of the fiber. The long-term goals of this project are to characterize the functional defects of mutant channels in these disorders and to determine how abnormal channel behavior produces symptoms in affected individuals. In these disorders, muscle dysfunction is caused by intermittent derangements in the electrical excitability of the fiber, which may be pathologically enhanced or depressed. Myotonia is a disorder of enhanced excitability wherein a single stimulus elicits a high- frequency burst of action potentials that produces involuntary persistent muscle contraction lasting seconds. Conversely, periodic paralysis results from a depolarization -induced loss of muscle excitability. Missense mutations in the adult skeletal muscle sodium channel (NaV1.4) may cause myotonia, periodic paralysis, or a combination of both in the same individual. The pathophysiological basis for this variation in clinical phenotype, all arising from mutations in a common sodium channel gene is a major focus of the studies in this proposal. Our experimental approach is to identify alterations in the behavior of mutant channels by measuring ionic current, and then use computer or animal-based models to explore how specific alterations in channel function give rise to myotonia or periodic paralysis. Aim 1 is to characterize the gating behavior of NaV1.4 channels, with a new focus on characterizing these properties for channels expressed in their native skeletal muscle environment. The availability of two mouse lines generated in our lab with knock-in point mutations in NaV1.4 (M1592V and R669H) offers a unique opportunity to characterize mutant channel behavior as occurs in muscle. Our studies on gating of disease- associated mutations of NaV1.4 will also explore the exciting new finding that missense mutations of arginines within S4 voltage-sensor domains may give rise to gating pore currents through an alternative permeation pathway different from the central pore. The propagation of action potentials into the transverse tubular system (TTS) and the activity-dependent accumulation of K+ therein are critical determinants of susceptibility to myotonia. Aim 2 will provide greater understanding for this important feature of muscle excitability by using state-of-the-art optical methods to measure TTS voltage transients and analytical models to estimate K+ accumulation both in normal mammalian muscle and for mouse models of myotonia and periodic paralysis. Aim 3 is a comparative analysis of the clinical phenotypes and electrophysiological properties of muscle from mice harboring either the M1592V or R669H mutations, as a model for gaining further insight on the mechanistic basis for the divergent phenotypes observed in humans for these allelic disorders of NaV1.4 (hyperkalemic periodic paralysis with myotonia contrasted by hypokalemic periodic paralysis without myotonia).
描述(由申请人提供):肌强直和周期性麻痹是骨骼肌的遗传性疾病,其中电压门控离子通道的突变改变了纤维的电兴奋性。该项目的长期目标是表征这些疾病中突变通道的功能缺陷,并确定异常通道行为如何在受影响的个体中产生症状。在这些疾病中,肌肉功能障碍是由纤维的电兴奋性间歇性紊乱引起的,其可能病理性增强或抑制。肌强直是一种兴奋性增强的疾病,其中单一刺激引起动作电位的高频爆发,产生持续数秒的不自主的持续肌肉收缩。相反,周期性麻痹是由于去极化引起的肌肉兴奋性丧失所致。成人骨骼肌钠通道 (NaV1.4) 的错义突变可能会导致同一个体出现肌强直、周期性麻痹或两者兼而有之。这种临床表型变异的病理生理学基础,全部由共同钠通道基因的突变引起,是本提案研究的主要焦点。 我们的实验方法是通过测量离子电流来识别突变通道行为的改变,然后使用计算机或基于动物的模型来探索通道功能的特定改变如何引起肌强直或周期性麻痹。目标 1 是表征 NaV1.4 通道的门控行为,新的重点是表征在其天然骨骼肌环境中表达的通道的这些特性。我们实验室生成的两个具有 NaV1.4 敲入点突变的小鼠品系(M1592V 和 R669H)为表征肌肉中发生的突变通道行为提供了独特的机会。我们对 NaV1.4 疾病相关突变门控的研究还将探索令人兴奋的新发现,即 S4 电压传感器域内精氨酸的错义突变可能会通过不同于中心孔的替代渗透途径产生门控孔电流。动作电位向横管系统 (TTS) 的传播以及其中 K+ 的活动依赖性积累是肌强直易感性的关键决定因素。目标 2 将通过使用最先进的光学方法测量 TTS 电压瞬变和分析模型来估计正常哺乳动物肌肉以及肌强直和周期性麻痹小鼠模型中 K+ 的积累,从而更好地理解肌肉兴奋性的这一重要特征。目标 3 是对携带 M1592V 或 R669H 突变的小鼠肌肉的临床表型和电生理学特性进行比较分析,作为模型,进一步了解在人类中观察到的这些 NaV1.4 等位基因疾病(伴有肌强直的高钾性周期性麻痹与不伴有肌强直的低钾性周期性麻痹)的不同表型的机制基础。 肌强直)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEPHEN C. CANNON其他文献

STEPHEN C. CANNON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEPHEN C. CANNON', 18)}}的其他基金

Pathophysiology of Myotonia and Periodic Paralysis
肌强直和周期性麻痹的病理生理学
  • 批准号:
    10277079
  • 财政年份:
    2021
  • 资助金额:
    $ 28.64万
  • 项目类别:
Pathophysiology of Myotonia and Periodic Paralysis
肌强直和周期性麻痹的病理生理学
  • 批准号:
    10641898
  • 财政年份:
    2021
  • 资助金额:
    $ 28.64万
  • 项目类别:
Pathophysiology of Myotonia and Periodic Paralysis
肌强直和周期性麻痹的病理生理学
  • 批准号:
    10442584
  • 财政年份:
    2021
  • 资助金额:
    $ 28.64万
  • 项目类别:
Disease Pathogenesis and Modification for CaV1.1-Associated Hypokalemic Periodic
CaV1.1 相关低钾血症周期性疾病的发病机制和修饰
  • 批准号:
    9528467
  • 财政年份:
    2012
  • 资助金额:
    $ 28.64万
  • 项目类别:
Disease Pathogenesis and Modification for CaV1.1-Associated Hypokalemic Periodic
CaV1.1 相关低钾血症周期性疾病的发病机制和修饰
  • 批准号:
    10196933
  • 财政年份:
    2012
  • 资助金额:
    $ 28.64万
  • 项目类别:
Disease Pathogenesis and Modification for CaV1.1-Associated Hypokalemic Periodic
CaV1.1 相关低钾血症周期性疾病的发病机制和修饰
  • 批准号:
    8496723
  • 财政年份:
    2012
  • 资助金额:
    $ 28.64万
  • 项目类别:
Disease Pathogenesis and Modification for CaV1.1-Associated Hypokalemic Periodic
CaV1.1 相关低钾血症周期性疾病的发病机制和修饰
  • 批准号:
    8346112
  • 财政年份:
    2012
  • 资助金额:
    $ 28.64万
  • 项目类别:
Disease Pathogenesis and Modification for CaV1.1-Associated Hypokalemic Periodic
CaV1.1 相关低钾血症周期性疾病的发病机制和修饰
  • 批准号:
    8688911
  • 财政年份:
    2012
  • 资助金额:
    $ 28.64万
  • 项目类别:
Molecular Physiology of Myotonia and Periodic Paralysis
肌强直和周期性麻痹的分子生理学
  • 批准号:
    7820641
  • 财政年份:
    2009
  • 资助金额:
    $ 28.64万
  • 项目类别:
Molecular Physiology of Myotonia and Periodic Paralysis
肌强直和周期性麻痹的分子生理学
  • 批准号:
    8461384
  • 财政年份:
    1994
  • 资助金额:
    $ 28.64万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 28.64万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 28.64万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 28.64万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 28.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 28.64万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 28.64万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 28.64万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 28.64万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 28.64万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 28.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了