Corneal Elastography and Patient-Specific Modeling for Simulation-based Therapy

用于基于模拟的治疗的角膜弹性成像和患者特异性建模

基本信息

  • 批准号:
    8664399
  • 负责人:
  • 金额:
    $ 38.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Corneal ectasia is a major cause of impaired vision-related quality of life in the United States and a leading indication for corneal transplantation. The lack of clinical tools for resolving biomechanical properties throughout the cornea is a critical barrier to understanding mechanisms of corneal instability and applying potentially transformative bioengineering approaches to risk screening and treatment optimization. The goal of this research program is to develop a robust OCT-based simulation platform for quantifying ectasia risk and predicting individual responses to a broad range of corneal treatments. The objective, which is aided by the sensitive link between corneal shape and visual function, is to identify the key structural predictors of ectatic disease and develop rationl approaches to customized crosslinking therapy through integrated patient- specific biomechanical measurement and modeling. The central hypothesis is that the magnitude and distribution of biomechanical properties in the cornea are key drivers of corneal shape. This hypothesis and the methods for testing it have been developed in part through the applicants' preliminary work in corneal optical coherence elastography (OCE) and in patient-specific finite element (FE) analysis studies that suggest important dependencies between material properties and shape. The hypothesis will be tested through the following specific aims: 1) Characterize the magnitude and distribution of corneal biomechanical properties across normal, surgically altered and pathologic states, 2) determine the accuracy of elastography-driven FE models for predicting outcomes of corneal interventions in donor eyes and patients, and 3) identify the key biomechanical drivers of keratoconus progression, post-refractive surgery ectasia, and crosslinking response using patient-specific simulations. Under Aim 1, OCE will be used in donor eye and clinical studies to test the hypothesis that the human cornea has intrinsic regional differences in biomechanical properties that are altered in characteristic ways by LASIK, keratoconus and collagen crosslinking. After generating FE models using subject-specific geometry for all pre-intervention eyes in Aim 1, Aim 2 will test the hypothesis that models populated with subject-specific OCE property data better predict outcomes than those with idealized bulk property estimates. Finally, in large-scale, multifactorial FE simulations using al normal and keratoconic patients as modeling substrates, Aim 3 will determine how elastic properties, initial corneal geometry and procedure variables interact to influence ectasia risk and crosslinking responses. Expected outcomes include clinical translation of OCT-based capabilities for mapping corneal biomechanical properties and generating patient-specific computational models capable of predicting treatment responses. Simulation-based optimizations will support novel, customizable calculators for ectasia risk and new algorithms for enhancing the effects of collagen crosslinking in individual eyes. These outcomes directly address gaps identified by the NEI and will enable new simulation-based treatment strategies for existing and emerging corneal procedures.
描述(由申请人提供):在美国,角膜扩张是视力相关生活质量受损的主要原因,也是角膜移植的主要适应症。 缺乏用于解决整个角膜的生物力学特性的临床工具是理解角膜不稳定机制和将潜在的变革性生物工程方法应用于风险筛查和治疗优化的关键障碍。 该研究项目的目标是开发一个强大的基于OCT的模拟平台,用于量化扩张风险并预测对各种角膜治疗的个体反应。 在角膜形状和视觉功能之间的敏感联系的帮助下,目的是识别扩张性疾病的关键结构预测因子,并通过整合的患者特异性生物力学测量和建模开发定制交联治疗的合理方法。 中心假设是角膜中生物力学性质的大小和分布是角膜形状的关键驱动因素。 该假设和用于测试它的方法已经部分地通过申请人在角膜光学相干弹性成像(OCE)和患者特异性有限元(FE)分析研究中的初步工作而开发,所述研究表明材料性质和形状之间的重要依赖性。 将通过以下具体目标检验这一假设:1)表征正常、手术改变和病理状态下角膜生物力学特性的大小和分布,2)确定弹性成像驱动的FE模型用于预测供体眼和患者中角膜干预结果的准确性,以及3)识别圆锥角膜进展、屈光手术后扩张、和交联反应。 根据目标1,OCE将用于供体眼和临床研究,以检验以下假设:人角膜在生物力学特性方面存在固有的区域差异,这些差异通过LASIK、圆锥角膜和胶原交联以特征性方式改变。 在目标1中使用针对所有干预前眼睛的受试者特定几何形状生成FE模型后,目标2将检验以下假设:填充有受试者特定OCE属性数据的模型比填充有理想化整体属性估计值的模型更好地预测结果。 最后,在使用正常和圆锥角膜患者作为建模基底的大规模多因素FE模拟中,Aim 3将确定弹性特性、初始角膜几何形状和手术变量如何相互作用以影响扩张风险, 交联反应 预期的结果包括基于OCT的能力的临床翻译,用于映射角膜生物力学特性和生成能够预测治疗反应的患者特定的计算模型。 基于模拟的优化将支持用于扩张风险的新型可定制计算器和用于增强单个眼睛中胶原交联效果的新算法。 这些结果直接解决了NEI确定的差距,并将为现有和新兴的角膜手术提供新的基于模拟的治疗策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Joseph Dupps其他文献

William Joseph Dupps的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Joseph Dupps', 18)}}的其他基金

Determining the Efficacy of Corneal Cross-Linking Protocols using Brillouin Microscopy
使用布里渊显微镜确定角膜交联方案的功效
  • 批准号:
    10642876
  • 财政年份:
    2022
  • 资助金额:
    $ 38.83万
  • 项目类别:
Advanced Imaging and Simulation Tools for Personalized Corneal Disease Assessment and Surgery
用于个性化角膜疾病评估和手术的先进成像和模拟工具
  • 批准号:
    10644983
  • 财政年份:
    2022
  • 资助金额:
    $ 38.83万
  • 项目类别:
Advanced Imaging and Simulation Tools for Personalized Corneal Disease Assessment and Surgery
用于个性化角膜疾病评估和手术的先进成像和模拟工具
  • 批准号:
    10365675
  • 财政年份:
    2022
  • 资助金额:
    $ 38.83万
  • 项目类别:
Determining the Efficacy of Corneal Cross-Linking Protocols using Brillouin Microscopy
使用布里渊显微镜确定角膜交联方案的功效
  • 批准号:
    10443488
  • 财政年份:
    2022
  • 资助金额:
    $ 38.83万
  • 项目类别:
Noninvasive assessment of the cornea by diffusion OCT
通过扩散 OCT 对角膜进行无创评估
  • 批准号:
    10421300
  • 财政年份:
    2018
  • 资助金额:
    $ 38.83万
  • 项目类别:
Noninvasive assessment of the cornea by diffusion OCT
通过扩散 OCT 对角膜进行无创评估
  • 批准号:
    10171859
  • 财政年份:
    2018
  • 资助金额:
    $ 38.83万
  • 项目类别:
Corneal Elastography and Patient-Specific Modeling for Simulation-based Therapy
用于基于模拟的治疗的角膜弹性成像和患者特异性建模
  • 批准号:
    8482579
  • 财政年份:
    2013
  • 资助金额:
    $ 38.83万
  • 项目类别:
RESOURCE/SERVICE CORE A - OCULAR IMAGING MODULE
资源/服务核心 A - 眼部成像模块
  • 批准号:
    9153316
  • 财政年份:
  • 资助金额:
    $ 38.83万
  • 项目类别:
RESOURCE/SERVICE CORE A - OCULAR IMAGING MODULE
资源/服务核心 A - 眼部成像模块
  • 批准号:
    9336309
  • 财政年份:
  • 资助金额:
    $ 38.83万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了