A novel spinal circuit involved in locomotion
一种参与运动的新型脊髓回路
基本信息
- 批准号:8616414
- 负责人:
- 金额:$ 19.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-02-15 至 2016-01-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylcholineAddressAmplifiersAspartateAxonBackBehaviorBiological AssayCandidate Disease GeneCell NucleusCerebellumCholinergic ReceptorsComplexExhibitsFeedbackGene Expression ProfilingGenerationsGenesGlutamatesGoalsImmunohistochemistryIn Situ HybridizationIn VitroInterneuronsLabelLimb structureLocomotionMediatingMethodsMicroarray AnalysisMolecularMotorMotor ActivityMotor NeuronsMotor outputMovementMusMuscleNeonatalNeuronsNeurosciencesNeurotransmittersOutputPatternPeripheralPhysiologicalPhysiologyPlayPreparationRelative (related person)Renshaw CellResearch DesignResearch Project GrantsRoleSpinalSpinal CordSpinocerebellar TractsSynapsesTechniquesTestingTissue-Specific Gene ExpressionTracerValidationbasecandidate markercentral pattern generatordesignexcitatory neuronextracellularlaser capture microdissectionmolecular markernoveloptical imagingpostnatalpublic health relevanceresearch studyresponseselective expression
项目摘要
DESCRIPTION (provided by applicant): A major goal of modern Neuroscience is to understand the neuronal basis of behavior. Locomotion is a behavior generated in the spinal cord by complex neuronal circuits. It is defined as precise, coordinated and alternating activity between opposing limbs as well as between antagonistic muscles of the same limb. Furthermore, locomotor behavior is attractive for experimental study because it can be easily accessed, defined, and quantified. A network of interneurons, known as the central pattern generator (CPG), is thought to be responsible for the genesis of rhythmic activity. CPG neurons activate motor neurons which in turn activate peripheral muscles resulting in movement. Motor neurons also possess axon collaterals which target exclusively a class of inhibitory interneurons, known as Renshaw cells. Our recent studies have challenged the traditional idea that motor neurons are simply the motor output from the spinal cord. Stimulation of motor neuron axons in neonatal mice can trigger locomotor activity in the presence of cholinergic receptor antagonists. This suggests that acetylcholine released by motor neuron axon collaterals is not required for rhythmogenesis. Furthermore, we discovered that neonatal motor neurons release a second fast excitatory neurotransmitter from their axon collaterals (glutamate or aspartate) in addition to acetylcholine. The mechanisms of how stimulation of motor axons can trigger locomotor-like activity in neonatal spinal cords are not understood. The identification
of neurons and their connectivity that participate in the locomotor CPG is critically needed for the elucidation of mechanisms involved in locomotor activity and would therefore represent a fundamental advance in the field. In this proposal, we provide some preliminary evidence that a novel class of excitatory interneurons is a critical component in a ventral spinal cord circuit, putatively connected to lumbar motor neurons and it may be involved in the locomotor central pattern generator. We have designed a set of experiments to test our main hypothesis, that motor neurons play an active role in the generation of locomotor activity. In Aim 1, we will attempt to identify the neuronal targets of this novel type of interneuron using physiological and morphological assays. In addition, we will investigate the participation of these interneurons in locomotor-like behavior using modern optophysiological methods employing the in vitro spinal cord preparation. Optophysiological approaches combine optical imaging with electrophysiological techniques. In Aim 2, we will perform laser capture microdissection from these interneurons compared to motor neurons using a differential gene microarray analysis. Validation of gene(s) expressed solely in these interneurons will be performed by in situ hybridization techniques. In summary, this two-year research project describes a comprehensive set of experiments that have the potential to identify a novel class of excitatory interneurons as a key neuronal player in the rhythmogenesis of locomotor activity.
描述(由申请人提供):现代神经科学的一个主要目标是了解行为的神经元基础。运动是由复杂的神经回路在脊髓中产生的一种行为。它被定义为相对肢体之间以及同一肢体的对抗性肌肉之间精确,协调和交替的活动。此外,运动行为是有吸引力的实验研究,因为它可以很容易地访问,定义和量化。中间神经元网络,被称为中枢模式发生器(CPG),被认为是负责节律活动的起源。CPG神经元激活运动神经元,运动神经元反过来激活周围肌肉,导致运动。运动神经元还具有轴突侧枝,专门针对一类抑制性中间神经元,称为Renshaw细胞。我们最近的研究挑战了运动神经元仅仅是脊髓运动输出的传统观念。在胆碱能受体拮抗剂存在的情况下,刺激新生小鼠运动神经元轴突可触发运动活动。这表明运动神经元轴突侧支释放的乙酰胆碱不是节律发生所必需的。此外,我们发现除了乙酰胆碱外,新生儿运动神经元还从轴突侧枝(谷氨酸或天冬氨酸)释放第二种快速兴奋性神经递质。运动轴突的刺激如何触发新生儿脊髓的运动样活动的机制尚不清楚。识别
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Z Mentis其他文献
George Z Mentis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Z Mentis', 18)}}的其他基金
Cellular and neuronal circuit mechanisms involved in locomotor activity
参与运动活动的细胞和神经元回路机制
- 批准号:
10587675 - 财政年份:2022
- 资助金额:
$ 19.8万 - 项目类别:
Mechanisms of synaptic loss by the classical complement pathway in motor circuit development and disease
运动回路发育和疾病中经典补体途径突触损失的机制
- 批准号:
10442652 - 财政年份:2018
- 资助金额:
$ 19.8万 - 项目类别:
Mechanisms of synaptic loss by the classical complement pathway in motor circuit development and disease
运动回路发育和疾病中经典补体途径突触损失的机制
- 批准号:
10207406 - 财政年份:2018
- 资助金额:
$ 19.8万 - 项目类别:
Mechanisms of synaptic loss by the classical complement pathway in motor circuit development and disease
运动回路发育和疾病中经典补体途径突触损失的机制
- 批准号:
10517958 - 财政年份:2018
- 资助金额:
$ 19.8万 - 项目类别:
Mechanisms of synaptic loss by the classical complement pathway in motor circuit development and disease
运动回路发育和疾病中经典补体途径突触损失的机制
- 批准号:
10661380 - 财政年份:2018
- 资助金额:
$ 19.8万 - 项目类别:
Generation of mice to selectively mark a subset of spinal interneurons
产生选择性标记脊髓中间神经元子集的小鼠
- 批准号:
9374839 - 财政年份:2017
- 资助金额:
$ 19.8万 - 项目类别:
Genetic evaluation of the p53 cell death pathway in spinal muscular atrophy (SMA)
脊髓性肌萎缩症 (SMA) 中 p53 细胞死亡途径的遗传评估
- 批准号:
8702765 - 财政年份:2014
- 资助金额:
$ 19.8万 - 项目类别:
Mechanisms of Central Synaptic Dysfunction in SMA
SMA 中枢突触功能障碍的机制
- 批准号:
8822939 - 财政年份:2012
- 资助金额:
$ 19.8万 - 项目类别:
Mechanisms of Central Synaptic Dysfunction in SMA
SMA 中枢突触功能障碍的机制
- 批准号:
9448504 - 财政年份:2012
- 资助金额:
$ 19.8万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 19.8万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 19.8万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 19.8万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 19.8万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 19.8万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 19.8万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 19.8万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 19.8万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 19.8万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 19.8万 - 项目类别:
Research Grant














{{item.name}}会员




