Activity Based Tagging of Neurons

基于活动的神经元标记

基本信息

  • 批准号:
    8711423
  • 负责人:
  • 金额:
    $ 47.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-30 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Information encoding in the brain is thought to be reflected in the pattern of activation of excitatory neurons in response to a given stimulus. This suggests that, in essence, a neural cell type is defined by the various stimuli and conditions that recruit its electrical activity. Alterations in activity in specific brain regions are associated wth a variety of neurological and psychiatric diseases and the pharmacological interventions to treat these diseases alter activity in specific circuits. The cellular and molecular changes that underli complex cognitive functions such as learning and memory are likely to occur at critical specific points in the circuits activated by the relevant stimuli. A great deal of effort in neuroscience is focused on defining these activated circuits however, currently available techniques are limited to discrete brain areas, lack cellular specificity, or provide a record of activity at only a singl time point preventing the identification of consistent patterns of network activation from noise or the identification of network changes over time in response to intervention. The approach that we will develop in this grant uses a single florescent marker to identify neural activity patterns t two independent time points. This provides a number of advantages over existing technology including, the ability to analyze the brain using high throughput automated imaging techniques, to identify specific cell populations in brain slices based on their activation patterns in the whoe animal for electrophysiological, morphological, or molecular studies, and the ability to apply FACS sorting techniques to the isolation of individual nuclei for epigenetic studies. The two time points at which activity is reported can be separated by at least one week allowing the analysis of circuit changes and target cell populations that are responsive to prolonged behavioral or pharmacological intervention. This should be useful in identifying the critical changes in the brain in response to these therapies.
描述(由申请人提供):大脑中的信息编码被认为反映在兴奋性神经元响应给定刺激的激活模式中。这表明,从本质上讲,神经细胞类型是由各种刺激和条件定义的, 恢复它的电活动。特定脑区活动的改变与各种神经和精神疾病相关,治疗这些疾病的药物干预会改变特定回路的活动。作为学习和记忆等复杂认知功能基础的细胞和分子变化可能发生在相关刺激激活的回路中的关键特定点。在神经科学中, 然而,目前可用的技术局限于离散的大脑区域,缺乏细胞特异性,或者仅在单个时间点提供活动记录,从而阻止了从噪声中识别网络激活的一致模式, 网络的标识响应于干预而随时间改变。我们将在这项资助中开发的方法使用一个单一的荧光标记来识别两个独立时间点的神经活动模式。这提供了优于现有技术的许多优点,包括使用高通量自动成像技术分析脑的能力,基于脑切片中的特定细胞群在whoe动物中的激活模式识别脑切片中的特定细胞群以用于电生理学、形态学或分子研究的能力,以及将FACS分选技术应用于分离单个细胞核以用于表观遗传学研究的能力。报告活性的两个时间点可以间隔至少一周,从而可以分析对延长的行为或药理学干预有反应的回路变化和靶细胞群。这应该有助于识别大脑对这些疗法的反应的关键变化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARK R MAYFORD其他文献

MARK R MAYFORD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARK R MAYFORD', 18)}}的其他基金

Activity Based Taggin of Neurons
基于活动的神经元标记
  • 批准号:
    9133333
  • 财政年份:
    2016
  • 资助金额:
    $ 47.36万
  • 项目类别:
Regulated Genetics Studies of Memory Formation
记忆形成的调控遗传学研究
  • 批准号:
    9265511
  • 财政年份:
    2015
  • 资助金额:
    $ 47.36万
  • 项目类别:
Regulated Genetics Studies of Memory Formation
记忆形成的调控遗传学研究
  • 批准号:
    9198082
  • 财政年份:
    2015
  • 资助金额:
    $ 47.36万
  • 项目类别:
Regulated Genetics Studies of Memory Formation
记忆形成的调控遗传学研究
  • 批准号:
    8610354
  • 财政年份:
    2013
  • 资助金额:
    $ 47.36万
  • 项目类别:
Regulated Genetics Studies of Memory Formation
记忆形成的调控遗传学研究
  • 批准号:
    8439065
  • 财政年份:
    2013
  • 资助金额:
    $ 47.36万
  • 项目类别:
Activity Based Tagging of Neurons
基于活动的神经元标记
  • 批准号:
    8413975
  • 财政年份:
    2012
  • 资助金额:
    $ 47.36万
  • 项目类别:
Activity Based Tagging of Neurons
基于活动的神经元标记
  • 批准号:
    8550801
  • 财政年份:
    2012
  • 资助金额:
    $ 47.36万
  • 项目类别:
Transgenic Probes of Active Circuits
有源电路转基因探针
  • 批准号:
    7689815
  • 财政年份:
    2009
  • 资助金额:
    $ 47.36万
  • 项目类别:
Transgenic Probes of Active Circuits
有源电路转基因探针
  • 批准号:
    8308668
  • 财政年份:
    2009
  • 资助金额:
    $ 47.36万
  • 项目类别:
Transgenic Probes of Active Circuits
有源电路转基因探针
  • 批准号:
    8532870
  • 财政年份:
    2009
  • 资助金额:
    $ 47.36万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 47.36万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 47.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 47.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 47.36万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 47.36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 47.36万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 47.36万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 47.36万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 47.36万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 47.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了