DMX: Enabling Blind Source Separation for Hearing Health Care

DMX:实现听力保健盲源分离

基本信息

项目摘要

DESCRIPTION (provided by applicant): Typical biological environments comprise complex mixtures of signals from multiple biological and environmental sources. Some sources contain critical information that researchers seek to acquire; other sources are distractions that interfer with data acquisition. Common acoustic environments are an important example: a significant segment of the aging US population has difficulty coping with noisy settings. Current solutions are limited to hearing aids, which notoriously amplify all sounds, or headsets, which selectively amplify a single source but isolate the listener from the rest of his or her acoustic environment. Our goal is to enable the development of health-related applications by providing a software library and a turn-key instrument that enable biomedical researchers to easily isolate information-bearing signals from interfering maskers. We propose to develop a system called DMX that uses innovative signal processing techniques to isolate and extract (that is, "demix") individual acoustic and bioelectrical source signals from the output of multiple sensors that are generally responding with an unknown mixture of simultaneous sources. The core DMX algorithm we have implemented, and whose effectiveness we demonstrated in Phase 1, "cleans up" live signals in real time by separating competing foreground sources, and suppressing background noise. A proven DMX innovation is the use of "taggers". A tagger is a sensor attached to a significant target or masking source that is identified to the system. Other sensors detect remote (untagged) targets or noise sources. Our current DMX algorithm constitutes a general-purpose "blind source separation" (BSS) algorithm that advances the state of the art. In Phase 2, we propose to package this algorithm as a fully tested, documented, supported, and deployable software library with MATLAB, C++, and Python interfaces. The library will provide reliable BSS capability to the research community, as well as to designers of assistive listening devices. The library will also be suitable for processing bioelectric signals - EEG, EMG, etc. - to allow researchers and clinicians to isolate sources of interest from response mixtures (e.g. fetal and maternal heartbeats). We will also develop and sell a turn-key DMX instrument, complete with up to eight microphones, signal processing electronics, and control software. This version of DMX will be useful to researchers who need to produce high-fidelity low-noise recordings in noisy environments such as MRI scanners, and who are not audio or bioelectrical signal engineers. This instrument will allow such a user to tag the most prominent sources, record the entire "signal scene", and extract the separate source signals and related location information. In Phase 2 we aim to reduce source separation time by employing dynamic error analysis, the intelligent use of environmental information such as source-to-sensor distance information, and the reuse of previously generated "separation solutions". Both versions of the DMX product will be ready for commercial use by the end of the project.
描述(申请人提供):典型的生物环境包括来自多种生物和环境来源的信号的复杂混合物。一些来源包含研究人员试图获取的关键信息;其他来源是干扰数据获取的干扰。常见的声学环境就是一个重要的例子:美国老龄化人口中的相当一部分人难以应对嘈杂的环境。目前的解决方案仅限于助听器,它以放大所有声音而臭名昭著,或者耳机,它选择性地放大单一来源,但将听者与其声学环境的其余部分隔离。我们的目标是通过提供一个软件库和一个交钥匙工具,使生物医学研究人员能够轻松地将承载信息的信号从干扰掩蔽物中分离出来,从而使与健康相关的应用程序的开发成为可能。我们建议开发一种名为DMX的系统,该系统使用创新的信号处理技术,从通常与未知的同时源混合物响应的多个传感器的输出中分离和提取(即“分离”)单个声源和生物电源信号。我们已经实现的核心DMX算法,以及我们在第一阶段中演示的其有效性,通过分离竞争的前景源和抑制背景噪声来实时“清理”实时信号。一项经过验证的DMX创新是使用“标记器”。标记器是连接到系统识别的重要目标或掩蔽源的传感器。其他传感器检测远程(未标记)目标或噪声源。我们目前的DMX算法构成了一个通用的盲源分离(BSS)算法,它推动了最先进的技术水平。在第二阶段,我们建议将该算法打包为一个经过充分测试、有文档记录、受支持且可部署的软件库,该软件库具有MATLAB、C++和Python接口。该图书馆将向研究界以及辅助听力设备的设计者提供可靠的BSS能力。该库还将适用于处理生物电信号-脑电、肌电等-TO 允许研究人员和临床医生从反应混合物(例如胎儿和产妇的心跳)中分离出感兴趣的来源。我们还将开发和销售交钥匙DMX仪器,包括多达8个麦克风、信号处理电子设备和控制软件。这一版本的DMX将对那些需要在嘈杂环境中产生高保真低噪音录音的研究人员有用,这些人包括核磁共振扫描仪,以及不是音频或生物电信号工程师的人。该仪器将允许这样的用户标记最突出的源,记录整个“信号场景”,并提取单独的源信号和相关的位置信息。在第二阶段,我们的目标是通过使用动态误差分析、智能使用环境信息(如源到传感器的距离信息)以及重复使用先前生成的“分离解决方案”来减少源分离时间。这两个版本的DMX产品将在项目结束时准备好投入商业使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RICHARD S GOLDHOR其他文献

RICHARD S GOLDHOR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RICHARD S GOLDHOR', 18)}}的其他基金

Hear What I Want: an Acoustically Smart Personalized Common Room
听到我想要的:声学智能的个性化公共休息室
  • 批准号:
    10484661
  • 财政年份:
    2022
  • 资助金额:
    $ 51.23万
  • 项目类别:
Clarity in Motion: A Motion-Tolerant Aid for Selectively Hearing Acoustic Sources
运动清晰度:用于选择性聆听声源的运动耐受辅助设备
  • 批准号:
    10603657
  • 财政年份:
    2022
  • 资助金额:
    $ 51.23万
  • 项目类别:
SIRCE: A Sensor Image Based Room-Centered Equalization System for Hearing Aids
SIRCE:用于助听器的基于传感器图像的以房间为中心的均衡系统
  • 批准号:
    9255961
  • 财政年份:
    2016
  • 资助金额:
    $ 51.23万
  • 项目类别:
ACES: A Product to Suppress or Enhance Critical Components in Acoustic Signals
ACES:抑制或增强声学信号中关键成分的产品
  • 批准号:
    8200823
  • 财政年份:
    2011
  • 资助金额:
    $ 51.23万
  • 项目类别:
DMX: Enabling Blind Source Separation for Hearing Health Care
DMX:实现听力保健盲源分离
  • 批准号:
    9061938
  • 财政年份:
    2010
  • 资助金额:
    $ 51.23万
  • 项目类别:
System For Separating Multiple Acoustic Sources
用于分离多个声源的系统
  • 批准号:
    6693482
  • 财政年份:
    2003
  • 资助金额:
    $ 51.23万
  • 项目类别:
ENVIRONMENTAL SOUND RECOGNITION
环境声音识别
  • 批准号:
    2125978
  • 财政年份:
    1992
  • 资助金额:
    $ 51.23万
  • 项目类别:
ENVIRONMENTAL SOUND RECOGNITION
环境声音识别
  • 批准号:
    3507165
  • 财政年份:
    1992
  • 资助金额:
    $ 51.23万
  • 项目类别:
SYSTEM FOR CONVERTING SPEECH INTO SYNTHESIS PARAMETERS
将语音转换为合成参数的系统
  • 批准号:
    3494747
  • 财政年份:
    1991
  • 资助金额:
    $ 51.23万
  • 项目类别:
ENVIRONMENTAL SOUND RECOGNITION
环境声音识别
  • 批准号:
    3494674
  • 财政年份:
    1989
  • 资助金额:
    $ 51.23万
  • 项目类别:

相似海外基金

Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
  • 批准号:
    24K18114
  • 财政年份:
    2024
  • 资助金额:
    $ 51.23万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
  • 批准号:
    498288
  • 财政年份:
    2024
  • 资助金额:
    $ 51.23万
  • 项目类别:
    Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
  • 批准号:
    10089306
  • 财政年份:
    2024
  • 资助金额:
    $ 51.23万
  • 项目类别:
    Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 51.23万
  • 项目类别:
    Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
  • 批准号:
    23K20339
  • 财政年份:
    2024
  • 资助金额:
    $ 51.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
  • 批准号:
    2740736
  • 财政年份:
    2024
  • 资助金额:
    $ 51.23万
  • 项目类别:
    Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
  • 批准号:
    2406592
  • 财政年份:
    2024
  • 资助金额:
    $ 51.23万
  • 项目类别:
    Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
  • 批准号:
    2305890
  • 财政年份:
    2024
  • 资助金额:
    $ 51.23万
  • 项目类别:
    Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
  • 批准号:
    23K20355
  • 财政年份:
    2024
  • 资助金额:
    $ 51.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
  • 批准号:
    23K24782
  • 财政年份:
    2024
  • 资助金额:
    $ 51.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了