Identification of Cooperative Genetic Alterations in the Pathogenesis of Oral Cancer
口腔癌发病机制中协同遗传改变的鉴定
基本信息
- 批准号:8916982
- 负责人:
- 金额:$ 96.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdenocarcinomaAdvanced DevelopmentAirAlgorithmsArchitectureBackBioinformaticsBiological AssayBiological ModelsCandidate Disease GeneCarcinomaCell SurvivalCellsChemosensitivity AssayClustered Regularly Interspaced Short Palindromic RepeatsComplementary DNAComplexComputer AnalysisCritical PathwaysDNA MethylationDNA Sequence AlterationDataData SetDependencyDevelopmentDysplasiaGene ExpressionGene MutationGenesGeneticGenomic InstabilityGenomicsGoalsGrowthHead and neck structureHealthHumanHuman Cell LineIn VitroInvestigationLabelLiquid substanceMalignant NeoplasmsMedicineMethodsMethylationModelingMolecularMusMutationNatureNeoplasm MetastasisNormal tissue morphologyOncogenesOncogenicOperative Surgical ProceduresOral mucous membrane structureOrganoidsOutputPathogenesisPathway interactionsPatientsPharmaceutical PreparationsPhenotypePrimary NeoplasmProbabilityProcessProtocols documentationRegulator GenesSamplingSpecimenSystemTestingThe Cancer Genome AtlasTissuesTransgenic MiceUpdateValidationViralXenograft ModelXenograft procedurebasebiobankcombinatorialdrug discoveryepigenomicsexome sequencingexperiencegastrointestinalgene interactionin vivoin vivo Modelinsightmalignant breast neoplasmmalignant mouth neoplasmmalignant phenotypemouth squamous cell carcinomaneoplastic cellnext generationnovelnovel strategiesscreeningsingle cell sequencingsmall hairpin RNAtissue culturetumortumor microenvironment
项目摘要
DESCRIPTION (provided by applicant): Recent in depth molecular analyses of human malignancies, through projects such as The Cancer Genome Atlas (TCGA), have revealed numerous frequently identified mutations; however, only a subset of these actually contribute to the development of particular cancers. The malignant phenotype is often the result of synthetic genetic interactions between multiple genomic and epigenomic aberrations. As such, subsets of tumors have specific co-occurring mutations or genomic alterations that cooperate in a co-dependent manner. The goal of this application is to identify the critical co-dependent molecular pathways that cooperate with known driver genomic alterations in oral squamous cell carcinoma (OSCC), one of the most frequent malignancies of the head and neck. The insight gained will, in turn, provide a platform for novel drug discovery and/or rationale for the investigation of novel combinations of existing drugs. Aim 1 will use sophisticated new bioinformatics algorithms developed by the Gevaert lab to integrate mutation and copy number alteration data with DNA methylation and gene expression data in OSCC TCGA data sets. These algorithms will be used to predict, with high probability, candidate genetic interactions among heterogeneous OSCC tumors and to identify master regulators of gene modules that are related to particular biologic processes, such as metastasis. In Aim 2, candidate gene interactions and master regulators will be validated by the Sunwoo lab using "next generation" in vivo synthetic lethality assays, using patient-derived xenografts to more closely reflect the primary tumor. Candidate master regulators of metastasis will also be evaluated using in vivo assays. In Aim 3, the Kuo lab has adapted their experience in culture and oncogenic transformation of gastrointestinal 3D air-liquid interface primary organoid cultures to OSCC. Accordingly, our validated wild-type oral mucosal organoid protocols will be used to introduce co-occurring mutations and gene alterations into wild-type human and mouse oral mucosa tissue to functionally validate the oncogenic activity and multigenic transforming synergy of putative OSCC genes from Aims 1 and 2. In Aim 3, the 3D organoid culture approach will also be used to grow primary human OSCC tumor organoids directly from surgical samples, for in vitro chemosensitivity testing, correlation against exome sequencing mutational status and shRNA/sgRNA-based gene validation. This bi-directional strategy of (1) targeting co-occurring mutations in patient-derived xenografts and primary tumors and (2) introducing co-occurring mutations into normal oral mucosa will provide important insight into our understanding of the synthetic genetic interactions in OSCC. Further, the functional and genetic data from Aims 2 and 3 will be channeled back to Aim 1 to continuously update the bioinformatics models.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olivier Gevaert其他文献
Olivier Gevaert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olivier Gevaert', 18)}}的其他基金
Multi-scale modeling of glioma for the prediction of treatment response, treatment monitoring and treatment allocation
用于预测治疗反应、治疗监测和治疗分配的神经胶质瘤多尺度建模
- 批准号:
10184938 - 财政年份:2021
- 资助金额:
$ 96.97万 - 项目类别:
Multi-scale modeling of glioma for the prediction of treatment response, treatment monitoring and treatment allocation
用于预测治疗反应、治疗监测和治疗分配的神经胶质瘤多尺度建模
- 批准号:
10614974 - 财政年份:2021
- 资助金额:
$ 96.97万 - 项目类别:
Multi-scale modeling of glioma for the prediction of treatment response, treatment monitoring and treatment allocation
用于预测治疗反应、治疗监测和治疗分配的神经胶质瘤多尺度建模
- 批准号:
10397589 - 财政年份:2021
- 资助金额:
$ 96.97万 - 项目类别:
Radiogenomics framework for non-invasive personalized medicine
非侵入性个性化医疗的放射基因组学框架
- 批准号:
10005534 - 财政年份:2015
- 资助金额:
$ 96.97万 - 项目类别:
Radiogenomics Framework for Non-Invasive Personalized Medicine
非侵入性个性化医疗的放射基因组学框架
- 批准号:
8837360 - 财政年份:2015
- 资助金额:
$ 96.97万 - 项目类别:
Identification of Cooperative Genetic Alterations in the Pathogenesis of Oral Cancer
口腔癌发病机制中协同遗传改变的鉴定
- 批准号:
9084417 - 财政年份:2015
- 资助金额:
$ 96.97万 - 项目类别:
Radiogenomics Framework for Non-Invasive Personalized Medicine
非侵入性个性化医疗的放射基因组学框架
- 批准号:
9012822 - 财政年份:2015
- 资助金额:
$ 96.97万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 96.97万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 96.97万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 96.97万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 96.97万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 96.97万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 96.97万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 96.97万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 96.97万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 96.97万 - 项目类别:














{{item.name}}会员




