Radiogenomics framework for non-invasive personalized medicine
非侵入性个性化医疗的放射基因组学框架
基本信息
- 批准号:10005534
- 负责人:
- 金额:$ 44.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-15 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAreaBiological AssayBiological MarkersBrain NeoplasmsCancer PatientClinicalComputer SimulationComputer Vision SystemsDataData SourcesDevelopmentDiagnosticDiagnostic ImagingDiffusionDrug TargetingDrug usageEpidermal Growth Factor ReceptorEyeGene ExpressionGene Expression ProfileGenesGenomeGenomicsGlioblastomaGoalsHead and Neck CancerHigh-Throughput Nucleotide SequencingHumanImageImage AnalysisIndividualInformaticsInvestigationLesionLettersLinkMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of lungManualsMapsMedical ImagingMedical centerMethodsModelingMolecularMolecular ProfilingMonitorOutcomePathway interactionsPatientsPatternPerfusionPharmaceutical PreparationsPositron-Emission TomographyPrediction of Response to TherapyPrimary carcinoma of the liver cellsProcessPrognostic MarkerPropertyRadiogenomicsRectal CancerResearchResistanceRetrospective cohortShapesSiteSomatic MutationSquamous cell carcinomaTechnologyTextureTherapeuticTimeTranslatingTranslationsTreatment outcomeTumor TissueWorkX-Ray Computed Tomographyactionable mutationbasecancer siteclinical applicationclinical carecohortfollow-upgenome analysisgenome sequencinghuman dataimaging biomarkerimaging modalityimaging studyimproved outcomein vivointerestmalignant breast neoplasmmolecular imagingmultimodalitymultiple omicsmutational statusnovel therapeuticsoutcome forecastoutcome predictionpersonalized medicineprecision medicineprecision oncologypredict clinical outcomepredictive signaturequantitative imagingradiologistradiomicsresponsesupervised learningsynergismtooltranscriptome sequencingtreatment choicetreatment responsetumor
项目摘要
Project summary
Radiogenomics, is a burgeoning area of research that aims to link medical imaging with multi-omics molecular
profiles of the same patients. Radiogenoimcs has shown its potential through its ability to predict clinical
outcomes e.g. prognosis, and through predicting actionable molecular properties of tumors, e.g. the activity of
EGFR, a major drug target in many cancers.
The typical imaging genomics workflow consists of the following steps: (1) Identify the tumor through
segmentation. This is often also defined as identifying Regions Of Interests or ROIs through a manual process
with a radiologist or using computer vision algorithms. (2) Feature extraction, often also known as radiomics,
whereby 100s of features are identified that capture the shape, the texture and the intensity distributions of
lesions in 2D or 3D. (3) Supervised machine learning to predict clinical outcomes such as prognosis, overall
survival or response to treatment, or predicting molecular profiles such as gene expression patterns or
metagenes, or individual molecular properties such as the mutation status of a gene (e.g. EGFR). This
workflow has been demonstrated in several cancers including lung cancer, brain tumors, hepatocellular
carcinoma, breast cancer etc.
Current radiogenomics applications are limited to study associations between imaging and molecular data, and
predicting long term outcomes. However, no actionable information is gained from radiogenomics maps. In this
renewal, we propose to develop a radiogenomics framework to support treatment response, treatment
allocation and treatment monitoring: (1) we will develop informatics algorithms that integrate radiogenomic data
for treatment response, (2) algorithms that allow combining radiogenomic data during treatment follow-up, and
(3) algorithms that use the radiogenomic map to suggest novel drugs and predict drug target activities.
Combining these complementary data sources in a radiogenomics framework for data fusion can have
profound contributions toward predicting treatment outcomes by uncovering unknown synergies and
relationships. More specifically, developing computational models integrating quantitative image features and
molecular data to develop radiogenomics signatures, holds the potential to translate in benefit to tumor patients
by investigating biomarkers that accurately predict therapy response of tumors. Readily, because medical
imaging is part of the routine diagnostic work-up of cancer patients and molecular data of human tumors is
increasingly being used in clinical workflows, therefore if reliable radiogenomic signatures can be found
reflecting treatment response, translation to the clinical applications is feasible.
项目摘要
放射基因组学是一个新兴的研究领域,旨在将医学成像与多组学分子生物学联系起来。
相同患者的特征。放射基因组学通过其预测临床
结果,例如预后,并通过预测肿瘤的可操作的分子特性,例如肿瘤的活性,
EGFR是许多癌症的主要药物靶点。
典型的成像基因组学工作流程由以下步骤组成:(1)通过以下步骤识别肿瘤:
细分这通常也被定义为通过手动过程识别感兴趣区域或ROI
或者使用计算机视觉算法。(2)特征提取,通常也被称为放射组学,
从而识别出数百个特征,这些特征捕获了物体的形状、纹理和强度分布,
2D或3D病变。(3)监督机器学习来预测临床结果,如预后,总体
生存或对治疗的反应,或预测分子谱,如基因表达模式,
多基因或个体分子特性,如基因(例如EGFR)的突变状态。这
工作流程已经在几种癌症中得到证实,包括肺癌、脑肿瘤、肝细胞癌、
癌、乳腺癌等。
目前的放射基因组学应用仅限于研究成像和分子数据之间的关联,
预测长期结果。然而,从放射基因组学图谱中没有获得可操作的信息。在这
更新,我们建议制定一个放射基因组学框架,以支持治疗反应,治疗
分配和治疗监测:(1)我们将开发整合放射基因组学数据的信息学算法
对于治疗反应,(2)允许在治疗随访期间组合放射基因组学数据的算法,以及
(3)使用放射基因组图谱来建议新药和预测药物靶点活性的算法。
在放射基因组学框架中组合这些互补数据源以进行数据融合可以具有
通过发现未知的协同作用,为预测治疗结果做出了深远的贡献,
关系。更具体地说,开发整合定量图像特征和
开发放射基因组学特征的分子数据,有可能转化为对肿瘤患者有益的信息。
通过研究生物标志物来准确预测肿瘤的治疗反应。很容易,因为医疗
成像是癌症患者常规诊断检查的一部分,
越来越多地用于临床工作流程,因此,如果可以找到可靠的放射基因组签名,
反映治疗反应,转化为临床应用是可行的。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data.
- DOI:10.1038/s42256-020-0173-6
- 发表时间:2020-05
- 期刊:
- 影响因子:23.8
- 作者:Mukherjee P;Zhou M;Lee E;Schicht A;Balagurunathan Y;Napel S;Gillies R;Wong S;Thieme A;Leung A;Gevaert O
- 通讯作者:Gevaert O
Topological image modification for object detection and topological image processing of skin lesions.
- DOI:10.1038/s41598-020-77933-y
- 发表时间:2020-12-03
- 期刊:
- 影响因子:4.6
- 作者:Vandaele R;Nervo GA;Gevaert O
- 通讯作者:Gevaert O
Structuring clinical text with AI: Old versus new natural language processing techniques evaluated on eight common cardiovascular diseases.
- DOI:10.1016/j.patter.2021.100289
- 发表时间:2021-07-09
- 期刊:
- 影响因子:0
- 作者:Zhan X;Humbert-Droz M;Mukherjee P;Gevaert O
- 通讯作者:Gevaert O
A meta-learning approach for genomic survival analysis.
- DOI:10.1038/s41467-020-20167-3
- 发表时间:2020-12-11
- 期刊:
- 影响因子:16.6
- 作者:Qiu YL;Zheng H;Devos A;Selby H;Gevaert O
- 通讯作者:Gevaert O
AI-based analysis of CT images for rapid triage of COVID-19 patients.
- DOI:10.1038/s41746-021-00446-z
- 发表时间:2021-04-22
- 期刊:
- 影响因子:15.2
- 作者:Xu Q;Zhan X;Zhou Z;Li Y;Xie P;Zhang S;Li X;Yu Y;Zhou C;Zhang L;Gevaert O;Lu G
- 通讯作者:Lu G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olivier Gevaert其他文献
Olivier Gevaert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olivier Gevaert', 18)}}的其他基金
Multi-scale modeling of glioma for the prediction of treatment response, treatment monitoring and treatment allocation
用于预测治疗反应、治疗监测和治疗分配的神经胶质瘤多尺度建模
- 批准号:
10184938 - 财政年份:2021
- 资助金额:
$ 44.4万 - 项目类别:
Multi-scale modeling of glioma for the prediction of treatment response, treatment monitoring and treatment allocation
用于预测治疗反应、治疗监测和治疗分配的神经胶质瘤多尺度建模
- 批准号:
10614974 - 财政年份:2021
- 资助金额:
$ 44.4万 - 项目类别:
Multi-scale modeling of glioma for the prediction of treatment response, treatment monitoring and treatment allocation
用于预测治疗反应、治疗监测和治疗分配的神经胶质瘤多尺度建模
- 批准号:
10397589 - 财政年份:2021
- 资助金额:
$ 44.4万 - 项目类别:
Identification of Cooperative Genetic Alterations in the Pathogenesis of Oral Cancer
口腔癌发病机制中协同遗传改变的鉴定
- 批准号:
8916982 - 财政年份:2015
- 资助金额:
$ 44.4万 - 项目类别:
Radiogenomics Framework for Non-Invasive Personalized Medicine
非侵入性个性化医疗的放射基因组学框架
- 批准号:
8837360 - 财政年份:2015
- 资助金额:
$ 44.4万 - 项目类别:
Identification of Cooperative Genetic Alterations in the Pathogenesis of Oral Cancer
口腔癌发病机制中协同遗传改变的鉴定
- 批准号:
9084417 - 财政年份:2015
- 资助金额:
$ 44.4万 - 项目类别:
Radiogenomics Framework for Non-Invasive Personalized Medicine
非侵入性个性化医疗的放射基因组学框架
- 批准号:
9012822 - 财政年份:2015
- 资助金额:
$ 44.4万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 44.4万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 44.4万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 44.4万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 44.4万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 44.4万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 44.4万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 44.4万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 44.4万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 44.4万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 44.4万 - 项目类别:
Standard Grant














{{item.name}}会员




