UCLA Multifunctional Mesoporous Silica Nanoparticle Platform for Treatment of Pancreas Cancer

加州大学洛杉矶分校多功能介孔二氧化硅纳米颗粒平台用于治疗胰腺癌

基本信息

  • 批准号:
    8959561
  • 负责人:
  • 金额:
    $ 51.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-25 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Nanocarriers that circumvent the stromal barrier in pancreatic ductal adenocarcinoma (PDAC) to allow (i) ratiometric control of a synergistic gemcitabine (GEM)/paclitaxel PTX) combination, (ii) overcome rate limiting steps in gemcitabine (GEM) metabolism, and (iii) reduce FOLFIRINOX toxicity (a potent 4-drug regimen that includes irinotecan) could significantly impact PDAC survival. The long-term goal of our multidisciplinary approach is to use rational-designed mesoporous silica nanoparticles (MSNP) to provide efficacious, safe and life-prolonging chemotherapy to PDAC patients. Our objectives are to develop and implement MSNP nanocarriers in advanced preclinical studies to: (i) achieve stable and high dose GEM or irinotecan loading, using a supported lipid bilayer (LBL); (ii) provide synergistic PTX/GEM delivery from a single MSNP carrier, with efficacy testing in human-derived PDAC tumors as well as the spontaneous Kras (KPC) transgenic model in mice; (iii) provide high dose encapsulated irinotecan delivery to reduce toxicity in the same animal models; (iv) achieve carrier targeting or transcytosis by iRGD peptide, which may also prevent metastasis; (v) deliver a small molecule TGF-ß inhibitor (TGF-ßi) that provides vascular access by interference in pericyte coverage. In order to attain these objectives, Aim 1 will use LBL-coated MSNP nanocarriers to optimize GEM delivery and efficacy in human derived PDAC tumors in mice as well as the spontaneous KPC model. The working hypothesis, based on preliminary data showing that LBL-coated MSNPs can deliver a synergistic GEM/PTX combination, is that stromal perturbation by PTX-induced oxidative stress will enhance GEM uptake. We will also deliver nano-enabled GEM-bisphosphonate to tumors with reduced expression of a rate-limiting enzyme (dCK) that is responsible for GEM activation through phosphorylation. Aim 2 will endeavor to demonstrate how the biocompatability of LBL-coated nanocarriers can be used to improve the toxicity profile and efficacy of irinotecan delivery in GEM-resistant tumors. The working hypothesis, based on preliminary data showing a high degree of MSNP biocompatibility, is that the high drug loading capacity and stability of LBL-MSNP will dramatically reduce irinotecan toxicity. This could lead to the expanded use of the potent FOLFIRINOX regimen. Aim 3 will endeavor to demonstrate that targeted delivery of iRGD-MSNP, promotion of nanocarrier transcytosis by iRGD co-delivery, or improvement of vascular access by TGF-ßi can enhance the chemotherapeutic efficacy of MSNP nanocarriers, including the carriers developed in Aims 1 and 2. We anticipate the delivery of GEM/PTX and irinotecan by multifunctional MSNPs will improve survival and reduce chemotherapy toxicity in robust animal models simulating human PDAC. These results are expected to have an immediate positive impact by providing efficacious and safe nanocarriers that can be placed into the pipeline of novel diagnostics and therapeutics being tested in human PDAC patients by our multidisciplinary team (that includes materials scientists, chemists, tumor biologists, an oncologist, and a surgeon).
 描述(由申请人提供):纳米载体绕过胰腺导管腺癌(PDAC)中的基质屏障,以允许(i)协同吉西他滨(GEM)/紫杉醇(PTX)组合的比例控制,(ii)克服吉西他滨(GEM)代谢中的限速步骤,和(iii)降低FOLFIRINOX毒性(一种有效的4种药物方案,包括伊立替康),可显著影响PDAC生存期。我们多学科方法的长期目标是使用合理设计的介孔二氧化硅纳米颗粒(MSNP)为PDAC患者提供有效,安全和延长生命的化疗。我们的目标是在先进的临床前研究中开发和实施MSNP纳米载体,以:(i)使用支持的脂质双层(LBL)实现稳定和高剂量的GEM或伊立替康负载;(ii)提供来自单个MSNP载体的协同PTX/GEM递送,在人源性PDAC肿瘤以及小鼠中的自发Kras(KPC)转基因模型中进行功效测试;(iii)提供高剂量包封的伊立替康递送以降低相同动物模型中的毒性;(iv)通过iRGD肽实现载体靶向或转胞吞作用,这也可以防止转移;(v)递送小分子TGF-β 1抑制剂(TGF-β 1),其通过干扰周细胞覆盖提供血管通路。为了实现这些目标,目标1将使用LBL包被的MSNP纳米载体来优化GEM在小鼠中的人源性PDAC肿瘤以及自发性KPC模型中的递送和功效。基于显示LBL包被的MSNP可以递送协同GEM/PTX组合的初步数据,工作假设是PTX诱导的氧化应激引起的基质扰动将增强GEM摄取。我们还将提供纳米使能的GEM-双膦酸盐到肿瘤中,降低限速酶(dCK)的表达,该酶负责通过磷酸化激活GEM。目的2将奋进证明LBL-包衣纳米载体的生物相容性如何用于改善伊立替康递送在GEM-耐药性肿瘤中的毒性特征和功效。基于显示高度MSNP生物相容性的初步数据,工作假设是LBL-MSNP的高载药量和稳定性将显著降低伊立替康毒性。这可能导致强效FOLFIRINOX方案的扩大使用。目的3将奋进证明iRGD-MSNP的靶向递送、通过iRGD共递送促进纳米载体转胞吞或通过TGF-β 1改善血管通路可增强MSNP纳米载体(包括目的1和2中开发的载体)的化疗功效。我们预期通过多功能MSNP递送GEM/PTX和伊立替康将在模拟人类PDAC的稳健动物模型中改善存活率并降低化疗毒性。这些结果预计将通过提供有效和安全的纳米载体产生直接的积极影响,这些纳米载体可以被置于我们的多学科团队(包括材料科学家,化学家,肿瘤生物学家,肿瘤学家和外科医生)在人类PDAC患者中测试的新型诊断和治疗方法中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy R Donahue其他文献

Timothy R Donahue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy R Donahue', 18)}}的其他基金

Leveraging Vulnerabilities Induced by STING Activation in Pancreatic Cancer
利用胰腺癌中 STING 激活引起的脆弱性
  • 批准号:
    10350646
  • 财政年份:
    2021
  • 资助金额:
    $ 51.31万
  • 项目类别:
Leveraging Vulnerabilities Induced by STING Activation in Pancreatic Cancer
利用胰腺癌中 STING 激活引起的脆弱性
  • 批准号:
    10737773
  • 财政年份:
    2021
  • 资助金额:
    $ 51.31万
  • 项目类别:
Leveraging Vulnerabilities Induced by STING Activation in Pancreatic Cancer
利用胰腺癌中 STING 激活引起的脆弱性
  • 批准号:
    10533556
  • 财政年份:
    2021
  • 资助金额:
    $ 51.31万
  • 项目类别:
Targeting KRAS and adenosine mediated immunosuppression in pancreatic cancer
靶向 KRAS 和腺苷介导的胰腺癌免疫抑制
  • 批准号:
    10583537
  • 财政年份:
    2021
  • 资助金额:
    $ 51.31万
  • 项目类别:
Leveraging Vulnerabilities Induced by STING Activation in Pancreatic Cancer
利用胰腺癌中 STING 激活引起的脆弱性
  • 批准号:
    10549375
  • 财政年份:
    2021
  • 资助金额:
    $ 51.31万
  • 项目类别:
Targeting KRAS and adenosine mediated immunosuppression in pancreatic cancer
靶向 KRAS 和腺苷介导的胰腺癌免疫抑制
  • 批准号:
    10224563
  • 财政年份:
    2021
  • 资助金额:
    $ 51.31万
  • 项目类别:
Targeting KRAS and adenosine mediated immunosuppression in pancreatic cancer
靶向 KRAS 和腺苷介导的胰腺癌免疫抑制
  • 批准号:
    10358617
  • 财政年份:
    2021
  • 资助金额:
    $ 51.31万
  • 项目类别:
UCLA Multifunctional Mesoporous Silica Nanoparticle Platform for Treatment of Pancreas Cancer
加州大学洛杉矶分校多功能介孔二氧化硅纳米颗粒平台用于治疗胰腺癌
  • 批准号:
    9150536
  • 财政年份:
    2015
  • 资助金额:
    $ 51.31万
  • 项目类别:
UCLA Multifunctional Mesoporous Silica Nanoparticle Platform for Treatment of Pancreas Cancer
加州大学洛杉矶分校多功能介孔二氧化硅纳米颗粒平台用于治疗胰腺癌
  • 批准号:
    9335325
  • 财政年份:
    2015
  • 资助金额:
    $ 51.31万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 51.31万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 51.31万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.31万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了