Coordination of DNA replication, repair, and translesion DNA synthesis
DNA 复制、修复和跨损伤 DNA 合成的协调
基本信息
- 批准号:9041875
- 负责人:
- 金额:$ 0.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-05-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAntibiotic ResistanceAntibioticsArchaeaAreaBackBacteriaBacterial DNABiochemicalBiochemical GeneticsBiological AssayCell physiologyCellsCollaborationsComplexDNADNA DamageDNA Polymerase IIIDNA Polymerase betaDNA RepairDNA biosynthesisDNA-Directed DNA PolymeraseDecision MakingE coli replicaseEscherichia coliEukaryotaExposure toFailureGeneticGenomic InstabilityGoalsGrantHealthHumanImmune responseIn VitroIndividualKnowledgeMalignant NeoplasmsMeasuresModelingMolecularMolecular ModelsMolecular Sieve ChromatographyMutagenesisMutationOrganismPathway interactionsPlayPolymerasePrimer ExtensionProcessProteinsPseudomonas aeruginosaReactive Oxygen SpeciesRegulationResearchRoentgen RaysRoleSlideTestingTherapeuticVertebral columnVirulenceWorkbasebiophysical techniquescell growthcystic fibrosis airwaydefined contributiongenome integrityhuman diseaseinsightlight scatteringmangemolecular modelingnovelpathogenpathogenic bacteriarepairedresearch studysingle moleculetool
项目摘要
DESCRIPTION (provided by applicant): Failure to efficiently coordinate DNA replication with other cellular processes results in mutations and genome instability, contributing to numerous human disease states, including cancers. Mutations in human pathogens, particularly those caused by reactive oxygen species (ROS) generated by the host immune response, or exposure to antibiotics, promote their adaptation to the host (i.e., pathoadaptation), exacerbating treatment. The long-term goal of our research is to develop an integrated mechanistic understanding of how organisms coordinate the actions of their DNA replication machinery with those of other cellular factors that act in DNA repair and damage tolerance. Work in our lab over the last 10 years supported by this grant has had a major impact on our understanding of mechanisms coordinating the actions of the E. coli replicase with those of translesion DNA synthesis DNA polymerases (TLS Pols). Our findings successfully challenged the well- established tool belt model. We have also shown that errors catalyzed by Pseudomonas aeruginosa DNA polymerase IV (Pol IV) contribute to mutations that likely promote persistence of this pathogen in cystic fibrosis airways. A molecular understanding of the mechanisms that contribute to mutations is crucial to our understanding of the basis for genome instability, human disease, and pathoadaptation, as well as efforts to develop novel therapies. The proposed research addresses unanswered questions regarding mechanisms that organisms use to manage the actions of their diverse Pols. We will focus our efforts in two critical yet understudied areas. During the prior period of support, we discovered that specific E.
coli beta-clamp-DNA interactions are required for DNA damage-induced mutagenesis, suggesting they impart a hierarchical order to Pol switches that may be exploited to control mutation rate. In Aim 1, we will determine the contributions of the different beta-clamp-DNA interactions to replication fidelity and TLS using a combination of genetic, biochemical, biophysical, and single molecule approaches. In Aim 2, we will use small angle X-ray scattering (SAXS), size exclusion chromatography-multi angle light scattering (SEC-MALS), molecular modeling, and biochemical approaches to structurally define complexes consisting of the 5 different E. coli Pols, clamp, and DNA. Using insights gained from these efforts, together with genetic, biochemical, biophysical, and single molecule approaches, we will define the mechanisms by which E. coli Pols switch. We will also determine whether an ability to impede Pol III processivity is shared by other proteins that switch with Pol III. Results from these experiments will provide unprecedented insight into the molecular mechanisms underlying coordinate regulation of DNA replication, DNA repair, and TLS. Furthermore, we anticipate that our results will identify critical steps in these evolutionarily conserved processes that can be targeted to control proficiency and fidelity of replication for therapeutic gain.
描述(由申请人提供):未能有效协调DNA复制与其他细胞过程导致突变和基因组不稳定,导致许多人类疾病状态,包括癌症。人类病原体中的突变,特别是由宿主免疫应答产生的活性氧(ROS)或暴露于抗生素引起的突变,促进它们对宿主的适应(即,病理适应),加重治疗。我们的研究的长期目标是发展一个综合的机制理解生物体如何协调其DNA复制机制的行动与其他细胞因子的DNA修复和损伤耐受性。在过去10年里,我们实验室的工作在这项资助的支持下,对我们理解协调E.大肠杆菌复制酶与跨损伤DNA合成DNA聚合酶(TLS Pos)。我们的研究结果成功地挑战了已经建立的工具带模型.我们还表明,铜绿假单胞菌DNA聚合酶IV(Pol IV)催化的错误有助于突变,可能促进这种病原体在囊性纤维化气道中的持续存在。对导致突变的机制的分子理解对于我们理解基因组不稳定性、人类疾病和病理适应的基础以及开发新疗法的努力至关重要。拟议的研究解决了有关生物体用于管理其不同Pol的行为的机制的未回答的问题。我们将把精力集中在两个关键但研究不足的领域。在之前的支持期间,我们发现特定的E。
coli β-clamp-DNA相互作用是DNA损伤诱导的诱变所必需的,这表明它们赋予Pol开关一个层次顺序,可以用来控制突变率。在目标1中,我们将使用遗传学、生物化学、生物物理学和单分子方法的组合来确定不同的β-钳夹-DNA相互作用对复制保真度和TLS的贡献。在目标2中,我们将使用小角X射线散射(SAXS),尺寸排阻色谱-多角光散射(SEC-MALS),分子模拟和生物化学方法来确定由5种不同的E. coli Pos、clamp和DNA。利用从这些努力中获得的见解,以及遗传、生物化学、生物物理和单分子方法,我们将定义E。coliPos开关。我们还将确定阻碍Pol III合成能力的能力是否与Pol III转换的其他蛋白质共享。这些实验的结果将提供前所未有的深入了解DNA复制,DNA修复和TLS协调调节的分子机制。此外,我们预计,我们的研究结果将确定这些进化上保守的过程中的关键步骤,可以有针对性地控制复制的熟练程度和保真度,以获得治疗效果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK D. SUTTON其他文献
MARK D. SUTTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK D. SUTTON', 18)}}的其他基金
Novel Combination Therapies to Combat Hypermutable Carbapenem-Resistant P. aeruginosa
对抗高突变碳青霉烯类耐药铜绿假单胞菌的新型联合疗法
- 批准号:
10626966 - 财政年份:2022
- 资助金额:
$ 0.99万 - 项目类别:
Novel Combination Therapies to Combat Hypermutable Carbapenem-Resistant P. aeruginosa
对抗高突变碳青霉烯类耐药铜绿假单胞菌的新型联合疗法
- 批准号:
10522530 - 财政年份:2022
- 资助金额:
$ 0.99万 - 项目类别:
Purification and Initial Biochemical Analysis of the P. aeruginosa ImuABC Error-Prone DNA Polymerase
铜绿假单胞菌 ImuABC 易错 DNA 聚合酶的纯化和初步生化分析
- 批准号:
9891550 - 财政年份:2020
- 资助金额:
$ 0.99万 - 项目类别:
Purification and Initial Biochemical Analysis of the P. aeruginosa ImuABC Error-Prone DNA Polymerase
铜绿假单胞菌 ImuABC 易错 DNA 聚合酶的纯化和初步生化分析
- 批准号:
10094185 - 财政年份:2020
- 资助金额:
$ 0.99万 - 项目类别:
Coordination of DNA replication, repair, and translesion DNA synthesis
DNA 复制、修复和跨损伤 DNA 合成的协调
- 批准号:
8630539 - 财政年份:2003
- 资助金额:
$ 0.99万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 0.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 0.99万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 0.99万 - 项目类别:
Collaborative R&D
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 0.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 0.99万 - 项目类别:
Operating Grants
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 0.99万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 0.99万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 0.99万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 0.99万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 0.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)