Neurotechnologies for Analysis of Network Dynamics

用于网络动力学分析的神经技术

基本信息

  • 批准号:
    8915748
  • 负责人:
  • 金额:
    $ 16.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The goal of the proposed course, entitled "Neurotechnologies for Analysis of Network Dynamics" (NAND), is to introduce students with training in physics, mathematics, computer science, and engineering to the theory and practice of modern neuroscience, with special emphasis on modern methods for the analysis of network dynamics in mammalian cortical circuits responsible for behavioral decision making. Recent progress in developing methods for electrical and optical recording from 10s to 100s of neurons simultaneously with cellular resolution is revolutionizing our ability to define neural activity sttes that correspond to periods of memory storage and decision-making in awake, behaving vertebrate animals, including mammals. The goal of this new course is to give students with advanced training in quantitative disciplines outside of neuroscience the theoretical background and practical experience needed to understand and contribute to the ongoing revolution in the analysis of neural network dynamics in anatomically defined neural circuits being used to make decisions based on sensory input, implement those decisions by generation of motor commands, and store information in both short-term and long-tem memory for use in subsequent decision-making. A four-week course is planned. The lectures will introduce the students to: i) the basics of cellular and synaptic physiology; ii) an array of cellular and molecular tools to facilitate network analysis; iii) technology for large scale multi-site recordin; iv) the analysis of large data sets produced by multi-channel recording; v) methods for obtaining multi-site recordings, both electrical and optical, from both animal and human brains; vi) models of information processing in cortical circuits, particularly during reinforcement learning. The laboratory component will provide experience in the recording and analysis of extra- and intracellular recordings, generation and recording of synaptic plasticity in the hippocampus, and multi-site optical and electrical recordings from awake behaving rodents. Students will use optogenetic methods for circuit analysis and learn to make fMRI measurements of activity in human subjects during an information processing task. The capstone of the laboratory is a one-week period devoted to student designed Independent Projects.
描述(由申请人提供):这门名为“网络动力学分析的神经技术”(NAND)的课程的目标是向受过物理、数学、计算机科学和工程训练的学生介绍现代神经科学的理论和实践,特别强调分析哺乳动物皮层回路中负责行为决策的网络动力学的现代方法。最近,在以细胞分辨率同时记录10到100个神经元的电学和光学方法方面取得的进展,正在彻底改变我们定义神经活动状态的能力,这些活动状态与清醒、有行为的脊椎动物(包括哺乳动物)的记忆储存和决策时期相对应。这门新课程的目标是为在神经科学以外的定量学科受过高级训练的学生提供必要的理论背景和实践经验,以理解并参与正在进行的神经网络动力学分析革命,在解剖学定义的神经回路中,神经网络动力学被用于根据感觉输入做出决策,通过生成运动命令来实现这些决策,并在短期和长期记忆中储存信息,以便在随后的决策中使用。计划为期四周的课程。讲座将向学生介绍:i)细胞和突触生理学的基础知识;Ii)一系列促进网络分析的细胞和分子工具;Iii)大规模多地点记录技术;Iv)多通道记录产生的大数据集分析;V)从动物和人类大脑中获得多位点记录的方法,包括电记录和光学记录;(六)皮质回路中的信息处理模型,特别是在强化学习过程中。实验室部分将提供记录和分析细胞外和细胞内记录的经验,海马突触可塑性的生成和记录,以及清醒行为啮齿动物的多位点光学和电子记录。学生将使用光遗传学方法进行电路分析,并学习在信息处理任务中对人类受试者的活动进行功能磁共振成像测量。该实验室的顶点是一个为期一周的时间专门用于学生设计的独立项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL J BERRY其他文献

MICHAEL J BERRY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL J BERRY', 18)}}的其他基金

Temporal Sequence Learning in the cortex
皮层的时间序列学习
  • 批准号:
    9093135
  • 财政年份:
    2016
  • 资助金额:
    $ 16.15万
  • 项目类别:
Neurotechnologies for Analysis of Network Dynamics
用于网络动力学分析的神经技术
  • 批准号:
    8742713
  • 财政年份:
    2014
  • 资助金额:
    $ 16.15万
  • 项目类别:
STRENGTH TRAINING IN PATIENTS WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE (REACT)
慢性阻塞性肺疾病患者的力量训练 (REACT)
  • 批准号:
    8167025
  • 财政年份:
    2010
  • 资助金额:
    $ 16.15万
  • 项目类别:
STRENGTH TRAINING IN PATIENTS WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE (REACT)
慢性阻塞性肺疾病患者的力量训练 (REACT)
  • 批准号:
    7951398
  • 财政年份:
    2009
  • 资助金额:
    $ 16.15万
  • 项目类别:
2008 Sensory Coding and The Natural Environment Gordon Research Conference
2008年感官编码与自然环境戈登研究会议
  • 批准号:
    7540097
  • 财政年份:
    2008
  • 资助金额:
    $ 16.15万
  • 项目类别:
Complex Pattern Detection by the Retina
视网膜的复杂模式检测
  • 批准号:
    7498453
  • 财政年份:
    2007
  • 资助金额:
    $ 16.15万
  • 项目类别:
GENE POLYMORPHISMS AND INTERVENTIONS TO PREVENT DISABILITY IN COPD PATIENTS
基因多态性和预防慢性阻塞性肺病患者残疾的干预措施
  • 批准号:
    7607671
  • 财政年份:
    2007
  • 资助金额:
    $ 16.15万
  • 项目类别:
Complex Pattern Detection by the Retina
视网膜的复杂模式检测
  • 批准号:
    8136080
  • 财政年份:
    2007
  • 资助金额:
    $ 16.15万
  • 项目类别:
Complex Pattern Detection by the Retina
视网膜的复杂模式检测
  • 批准号:
    7320981
  • 财政年份:
    2007
  • 资助金额:
    $ 16.15万
  • 项目类别:
Complex Pattern Detection by the Retina
视网膜的复杂模式检测
  • 批准号:
    7681074
  • 财政年份:
    2007
  • 资助金额:
    $ 16.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了