Injectable Implants for Increased Tumor Treatment Volume Using Pressure Driven Diffusion
利用压力驱动扩散增加肿瘤治疗量的注射植入物
基本信息
- 批准号:9130018
- 负责人:
- 金额:$ 3.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2017-12-03
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdvanced DevelopmentAdverse effectsAffinityAlternative TherapiesAreaBerylliumBindingBiocompatibleCancer EtiologyCancer PatientCell DeathCharacteristicsComplexCyclodextrinsDataDevelopmentDiffusionDoxorubicinDrug CarriersDrug ControlsDrug Delivery SystemsDrug ImplantsDrug KineticsDrug RegulationsEngineeringEnvironmentEvaluationExcisionFormulationGlycolic-Lactic Acid PolyesterGoalsHepaticHybridsImplantIn SituIn VitroIncidenceInjectableInjection of therapeutic agentInterventional radiologyIntravenousLeftLiverLiver neoplasmsMalignant NeoplasmsMalignant neoplasm of liverMeasuresMediatingMetastatic Neoplasm to the LiverModelingMolecular WeightMonitorNatureNeoplasm MetastasisNoduleNormal tissue morphologyOperative Surgical ProceduresOutcomePalliative CarePatientsPenetrationPerfusionPermeabilityPharmaceutical PreparationsPhasePolymersPopulationPrecipitationPrimary carcinoma of the liver cellsProceduresPropertyRattusRegimenResearchSideSolidSolid NeoplasmSpatial DistributionStagingSwellingSystemSystemic TherapyTechniquesTechnologyTestingTherapeuticTimeTissuesTranslationsTumor TissueUltrasonographyUnited StatesUnresectableWaterWorkaqueousbasebiodegradable polymerchemotherapeutic agentchemotherapyclinical practiceclinically relevantcrosslinkcurative treatmentsdesigndriving forcedrug distributioneffective therapyfluorescence imagingimage guidedimprovedin vivoinsightlocal drug deliverymeetingsminimally invasivemortalitynovelpatient populationpolyacrylamidepolyacrylamide hydrogelspressurepublic health relevanceresponsesystemic toxicitytissue phantomtreatment strategytumortumor ablationuptake
项目摘要
DESCRIPTION (provided by applicant): Liver cancer incidence is on the rise in the United States and worldwide. Since the majority of patients with hepatic malignancies are not candidates for invasive surgical resection, there is a strong demand for alternative therapies. Local, minimally invasive, image-guided approaches such as tumor ablation offer promising outcomes for liver cancer patients, when combined with effective chemotherapy. Unfortunately most chemotherapeutic regimens are associated with high systemic toxicities and thus are not the ideal strategy when a minimally invasive approach is desired. Local, injectable drug delivery systems offer an alternative to systemic therapy in these cases, since they can be administered under image guidance, and can focus the bulk of released drug directly at the tumor side avoiding systemic side effects. Accordingly, the overarching goal of our research is to develop an effective local, ultrasound-guided platform drug delivery system for treatment of solid tumors that can be administered, monitored, and controlled by utilizing existing interventional radiology techniques. Within the scope of this larger project, one of the crucial elements is development of the appropriate base matrix that will carry the drug. This matrix needs to be biocompatible and injectable and yet be able to carry a high amount of drug for an extended time. In addition, the drug released from the delivery system needs to overcome the limited penetration distance problem faced by most implantable chemotherapy systems. The goal of the proposed project is thus to engineer and evaluate a new injectable delivery system that meet the above design criteria. The proposed system will incorporate a unique polymer shown to prolong the release rate of doxorubicin to clinically therapeutic rates, through use of reversible, high-affinity molecular interactions. The polymer is also capable of enhancing drug penetration into tumor tissue using a unique concept of pressure-driven drug diffusion. The synergistic combination of minimal invasiveness, therapeutic release rates, and increased diffusion should result in a system that is significantly more effective in treatment of tumors. The work will be carried out in
three aims. First an injectable formulation of these affinity-based polymers will be synthesized and characterized. These polymers will then be evaluated and optimized for pressure-induced doxorubicin release in a novel in vitro tissue mimicking phantom. Finally, in this last aim, the optimal implant formulation, developed in the first two aims with the effective concentration at the highest penetration distance, will be tested in vivo in an orthotopic wildtype rat model of HCC. The injectable local drug delivery formulations designed based on the acquired data will be more effective in treatment of liver tumors and could be the driving force behind a shift in minimally invasive management of primary hepatocellular carcinomas as well as secondary liver cancers resulting from metastasis.
描述(由申请人提供):肝癌发病率在美国和世界范围内呈上升趋势。由于大多数肝脏恶性肿瘤患者不适合进行侵入性手术切除,因此对替代疗法的需求很大。局部、微创、图像引导的方法,如肿瘤消融术,在与有效的化疗相结合时,为肝癌患者提供了有希望的结果。不幸的是,大多数化疗方案与高全身毒性相关,因此当需要微创方法时不是理想的策略。在这些情况下,局部可注射药物递送系统提供了全身治疗的替代方案,因为它们可以在图像引导下施用,并且可以将释放的药物的大部分直接集中在肿瘤侧,避免全身副作用。因此,我们研究的总体目标是开发一种有效的局部超声引导平台药物递送系统,用于治疗实体瘤,可以通过利用现有的介入放射学技术进行管理,监测和控制。在这个较大的项目范围内,关键因素之一是开发将携带药物的适当基础基质。这种基质需要是生物相容的和可注射的,并且还能够在延长的时间内携带大量的药物。此外,从递送系统释放的药物需要克服大多数可植入化疗系统所面临的有限穿透距离问题。因此,拟议项目的目标是设计和评价符合上述设计标准的新型注射给药系统。所提出的系统将包含一种独特的聚合物,通过使用可逆的高亲和力分子相互作用,可将阿霉素的释放速率延长至临床治疗速率。该聚合物还能够使用压力驱动药物扩散的独特概念来增强药物渗透到肿瘤组织中。最小侵入性、治疗释放速率和增加的扩散的协同组合应导致在肿瘤治疗中显著更有效的系统。该工作将于
三个目标。首先,将合成并表征这些亲和聚合物的注射制剂。然后,这些聚合物将进行评估和优化的压力诱导的阿霉素释放在一个新的体外组织模仿体模。最后,在最后一个目标中,将在原位野生型大鼠HCC模型中对前两个目标中开发的最佳植入物制剂(在最高穿透距离下具有有效浓度)进行体内测试。基于所获得的数据设计的可注射局部给药制剂将更有效地治疗肝脏肿瘤,并可能成为原发性肝细胞癌以及转移引起的继发性肝癌微创治疗转变的驱动力。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting in vivo behavior of injectable, in situ-forming drug-delivery systems.
预测可注射的原位形成药物输送系统的体内行为。
- DOI:10.4155/tde-2017-0007
- 发表时间:2017
- 期刊:
- 影响因子:4.2
- 作者:Hernandez,Christopher;Exner,AgataA
- 通讯作者:Exner,AgataA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Hernandez其他文献
Christopher Hernandez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Hernandez', 18)}}的其他基金
Injectable Implants for Increased Tumor Treatment Volume Using Pressure Driven Diffusion
利用压力驱动扩散增加肿瘤治疗量的注射植入物
- 批准号:
8987115 - 财政年份:2015
- 资助金额:
$ 3.28万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Research Grant














{{item.name}}会员




