Novel Glaucoma Diagnostics for Structure and Function
新型青光眼结构和功能诊断
基本信息
- 批准号:9350830
- 负责人:
- 金额:$ 71.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-10 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAlgorithmsAssesAxonBiomechanicsBirefringenceBlindnessBostonComorbidityComputer softwareDataDetectionDevelopmentDiagnosisDiagnosticDiagnostic ProcedureDifferential EquationDiscriminationDiseaseDisease ProgressionEarly DiagnosisEnrollmentEvaluationExclusion CriteriaEyeFunctional disorderFundingFutureGenerationsGlaucomaGoalsHealthImageImage AnalysisImageryImaging DeviceImaging technologyIndividualInterventionKnowledgeManufacturer NameMeasurementMeasuresMethodsMicrotubulesModelingMorbidity - disease rateOptic DiskOptical Coherence TomographyOutcomeOutcomes ResearchPatientsPerformancePreventionProcessPropertyResearch Project GrantsRetinaRetinalRiskSample SizeScanningScleraSignal TransductionSoftware ToolsSourceStagingStructureStructure-Activity RelationshipSuspect GlaucomasSynapsesSystemTechnologyTestingThickTimeTissuesValidity and ReliabilityVisualadaptive opticsanalytical methodanalytical toolclinically relevantcohortdesignfollow-upimaging modalityimprovedin vivoinnovationinnovative technologiesmarkov modelnovelnovel diagnosticspreventrelating to nervous systemresearch clinical testingresponseretinal nerve fiber layertooltwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): Glaucoma is a leading cause of blindness and visual morbidity. Because the disease causes irreversible damage to neural tissue it is of upmost importance to identify glaucoma and its progression at the earliest possible stages. Through advancements in the use of optical coherence tomography (OCT) and other technologies, the long-term goal of this research project is to precisely and accurately detect ocular structural and
functional changes associated with glaucoma and to identify eyes with glaucoma that are at risk for future disease progression. This is accomplished by consolidating our long-term data acquired from various generations of OCT technology over the last 19 years. By using innovative methods for image quality improvement along with signal morphing, it is now possible to reliably bridge data acquired by the different generations and manufacturers of OCT, creating the longest-term cohort of longitudinal OCT measurements of the retina and optic nerve head regions. Advanced retinal segmentation software will be applied enabling detailed discrimination of all retinal layers even in the presence of ocular co-morbidity coincident with glaucoma (a previous exclusion criteria), allowing maximal use of subject and patient data. Using this cohort, two methods will be uniquely applied for determining the long-term relationship between structure and function: Continuous-time hidden Markov model and Latent differential equation models. This would enhance understanding of the disease process and allow determination of the best methods to identify disease and its progression at various stages. We will utilize advanced innovative imaging technologies and methods to accurately and precisely detect evidence of early structural changes: Swept-source OCT, Adaptive-optics OCT and Polarization-sensitive OCT. These technologies will be used to image the retina, sclera and optic nerve head providing enhanced information of the lamina cribrosa and birefringence properties. Scans will be also acquired during and following provocative acute IOP elevation testing to asses the morphological and biomechanical responses as potential markers for current and future disease characterization. The outcomes of this research project will provide an innovative and enhanced evaluation of ocular structure and function in glaucoma that will expand our understanding of the disease pathophysiology, offer new diagnostic tools for early disease detection and disease progression and identify subjects at risk for rapid glaucoma progression.
描述(申请人提供):青光眼是导致失明和视力障碍的主要原因。由于这种疾病会对神经组织造成不可逆转的损害,因此在可能的早期阶段识别青光眼及其进展是最重要的。通过光学相干断层扫描(OCT)和其他技术的应用的进步,本研究项目的长期目标是精确和准确地检测眼睛的结构和
与青光眼相关的功能变化,并识别有未来疾病进展风险的青光眼眼睛。这是通过整合我们过去19年来从不同代OCT技术获得的长期数据来实现的。通过使用改善图像质量的创新方法以及信号变形,现在可以可靠地连接不同代和制造商获取的OCT数据,创建视网膜和视神经头区域纵向OCT测量的最长时间队列。将应用先进的视网膜分割软件,即使在存在与青光眼(以前的排除标准)一致的眼睛共病的情况下,也能够详细区分所有视网膜层,从而最大限度地利用受试者和患者的数据。利用这一队列,两种方法将被唯一地应用于确定结构与功能之间的长期关系:连续时间隐马尔可夫模型和潜微分方程模型。这将加强对疾病过程的了解,并能够确定确定疾病及其在不同阶段的发展的最佳方法。我们将利用先进的创新成像技术和方法,准确和准确地检测早期结构变化的证据:扫描源OCT、自适应光学OCT和偏振敏感OCT。这些技术将用于对视网膜、巩膜和视神经头进行成像,提供关于筛板和双折射特性的更多信息。还将在刺激性急性眼压升高测试期间和之后进行扫描,以评估形态和生物力学反应,作为当前和未来疾病特征的潜在标记物。这一研究项目的结果将为青光眼的眼睛结构和功能提供创新和增强的评估,扩大我们对疾病病理生理学的理解,为早期发现疾病和疾病进展提供新的诊断工具,并识别青光眼快速进展的风险对象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel S Schuman其他文献
Lymphoma of the orbit masquerading as Tolosa-Hunt syndrome
- DOI:
10.1186/s12886-015-0037-8 - 发表时间:
2015-05-15 - 期刊:
- 影响因子:1.700
- 作者:
Tarek A Shazly;Ellen B Mitchell;Gabrielle R Bonhomme;Joel S Schuman - 通讯作者:
Joel S Schuman
Joel S Schuman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel S Schuman', 18)}}的其他基金
Novel Glaucoma Diagnostics for Structure and Function - Renewal - 1
针对结构和功能的新型青光眼诊断 - 更新 - 1
- 批准号:
10866656 - 财政年份:2023
- 资助金额:
$ 71.49万 - 项目类别:
Clinical glaucoma management enabled by visible-light OCT
可见光 OCT 实现临床青光眼管理
- 批准号:
10696088 - 财政年份:2021
- 资助金额:
$ 71.49万 - 项目类别:
Clinical glaucoma management enabled by visible-light OCT
可见光 OCT 实现临床青光眼管理
- 批准号:
10279742 - 财政年份:2021
- 资助金额:
$ 71.49万 - 项目类别:
Clinical glaucoma management enabled by visible-light OCT
可见光 OCT 实现临床青光眼管理
- 批准号:
10487592 - 财政年份:2021
- 资助金额:
$ 71.49万 - 项目类别:
Novel Glaucoma Diagnostics for Structure and Function
新型青光眼结构和功能诊断
- 批准号:
9542334 - 财政年份:2016
- 资助金额:
$ 71.49万 - 项目类别:
Novel Glaucoma Diagnostics for Structure and Function
新型青光眼结构和功能诊断
- 批准号:
7487755 - 财政年份:2005
- 资助金额:
$ 71.49万 - 项目类别:
Novel Glaucoma Diagnostics for Structure and Function
新型青光眼结构和功能诊断
- 批准号:
7674649 - 财政年份:2005
- 资助金额:
$ 71.49万 - 项目类别:
Novel Glaucoma Diagnostics for Structure and Function
新型青光眼结构和功能诊断
- 批准号:
6983251 - 财政年份:2005
- 资助金额:
$ 71.49万 - 项目类别:
Novel Glaucoma Diagnostics for Structure and Function
新型青光眼结构和功能诊断
- 批准号:
7273552 - 财政年份:2005
- 资助金额:
$ 71.49万 - 项目类别:
Novel Glaucoma Diagnostics for Structure and Function
新型青光眼结构和功能诊断
- 批准号:
7124631 - 财政年份:2005
- 资助金额:
$ 71.49万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 71.49万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 71.49万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 71.49万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 71.49万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 71.49万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 71.49万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 71.49万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 71.49万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 71.49万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 71.49万 - 项目类别:
Continuing Grant














{{item.name}}会员




