Mechanisms and Regulation of Peroxiredoxins
过氧化还原蛋白的机制和调控
基本信息
- 批准号:9121765
- 负责人:
- 金额:$ 35.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-05 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylationActive SitesAddressAge-MonthsAgingAntibioticsAntioxidantsApoptosisAreaAttentionBiochemicalBiological ModelsBiological ProcessBiologyCalpainCatalysisCell Differentiation processCell Signaling ProcessCellsChemicalsCollectionCommunicable DiseasesCrystallographyCysteineDegenerative DisorderDevelopmentDiseaseDisulfidesDrug TargetingElectron TransportEnzymatic BiochemistryEnzymesEquilibriumEukaryotaExplosionFamilyGoalsGrowthHealthHumanHydrogen PeroxideImmune systemImpairmentInfectious AgentInfluentialsInterventionKineticsKnockout MiceKnowledgeLiteratureLocal Anti-Infective AgentsLocationMalignant NeoplasmsMapsMeasuresMediatingModelingModificationMolecular ConformationNADPH OxidaseOrganismOxidation-ReductionOxidative StressPaperPathway interactionsPeroxidasesPeroxidesPhosphorylationPhosphotransferasesPlayPost-Translational Protein ProcessingPreventionPropertyProteinsPublished CommentReactionReducing AgentsRegulationResearchRoleSalmonella typhimuriumScienceSecond Messenger SystemsSignal PathwaySignal TransductionSignaling MoleculeSiteSpecificityStructureSurfaceTXN geneTherapeutic AgentsThermodynamicsTimeToll-like receptorsToxinVirulence FactorsWorkX-Ray CrystallographyXanthomonas campestrisbasebiophysical propertiescell growthcombatcytokinedimerelectron donorhuman diseaseimprovedin vivoinhibitor/antagonistinnovationinsightkillingsmembermicrobialnitrationnovel therapeuticsoxidative damagepathogenperoxiredoxinpublic health relevancesecond messengertrendultra high resolutionvirtual
项目摘要
DESCRIPTION (provided by applicant): Hydrogen peroxide is a toxin used by the human immune system to kill infectious organisms. It is now well accepted that it is also a common second messenger purposefully produced by NADPH oxidases as a part of eukaryotic signaling pathways crucial for human health such as those triggered by cytokines, many growth factors, and toll-like receptors of the innate immune system. Over the past 20 years, in part due to the work of the PIs of this proposal, a distinct, highly abundant family of peroxide-reducing enzymes, peroxiredoxins (Prxs), has gone from relative obscurity to become a major focus of redox biology research. Over these two decades, the PIs have developed expertise in Prx enzymology, biophysical characterization, and structure by characterizing Prxs from various organisms, especially using the peroxiredoxin AhpC of Salmonella typhimurium as a primary model system. Studies of Prxs are important both because Prxs from human pathogens are targets for antibiotic development, and because mammalian Prxs are involved in regulating key signaling pathways, with a Prx1 knockout mouse developing many forms of cancer by nine months of age. In 2003, we discovered that the mobility of protein segments packing near the active site is a key determinant of the sensitivity of Prxs to inactivation by peroxide-mediated hyperoxidation, and we proposed the "floodgate hypothesis" for how this sensitivity to inactivation would benefit organisms, like humans, where hydrogen peroxide is used as a signaling molecule: the antioxidant properties of the Prxs would be switched off at the right times and places to allow for a controlled local accumulation of peroxide. Since that time, additional posttranslational modifications (PTMs) have been shown to regulate the function of human Prxs. Given the importance of Prxs as microbial pathogenicity factors, for combating oxidative stress, and for regulating cell growth and differentiation in human cells, we propose here to address areas of Prx research where the biggest open questions remain. In Aim 1, we will deepen our understanding of key determinants of catalysis and of sensitivity toward hyperoxidation by investigating the biophysical and functional effects of four physiologically relevant PTMs on human Prx activity. In Aim 2, we develop a new Prx `model system' suitable for both NMR and crystallographic studies that will provide an unprecedented ability to measure and correlate dynamic features with structure and function. In Aim 3, we will advance knowledge of the poorly studied, but often rate-limiting, Prx reduction reaction, evaluating for several key Prxs how specificity and efficiency depend on oligomeric state, modification status, and location of a second (resolving) cysteine. We will also map out interaction interfaces by crystallography and/or NMR. These efforts will address areas important to the function and regulation of Prxs which have not yet received sufficient attention in spite of their importance, leading to a new level of understanding through which medically-and biologically-relevant interventions could be envisioned.
描述(由申请方提供):过氧化氢是一种由人体免疫系统用于杀死感染性生物的毒素。现在公认的是,它也是一种常见的第二信使,由NADPH氧化酶有目的地产生,作为对人类健康至关重要的真核细胞信号传导途径的一部分,例如由细胞因子、许多生长因子和先天免疫系统的toll样受体触发的信号传导途径。在过去的20年里,部分由于这项提案的PI的工作,一个独特的,高度丰富的过氧化物还原酶家族,过氧化物还原酶(Prxs),已经从相对默默无闻成为氧化还原生物学研究的主要焦点。在这二十年中,PI通过表征来自各种生物体的Prx,特别是使用鼠伤寒沙门氏菌的过氧化物酶AhpC作为主要模型系统,开发了Prx酶学,生物物理表征和结构方面的专业知识。对Prxs的研究很重要,因为来自人类病原体的Prxs是抗生素开发的目标,并且因为哺乳动物Prxs参与调节关键信号通路,Prx1敲除小鼠在9个月大时会发展出多种形式的癌症。在2003年,我们发现在活性位点附近包装的蛋白质片段的流动性是Prxs对过氧化物介导的过氧化作用失活的敏感性的关键决定因素,我们提出了"闸门假说",说明这种失活的敏感性如何使生物体受益,如人类,其中过氧化氢被用作信号分子:Prxs的抗氧化性能将在适当的时间和地点被关闭,以允许过氧化物的受控局部积累。从那时起,额外的翻译后修饰(PTM)已被证明可以调节人Prx的功能。考虑到Prxs作为微生物致病因子、对抗氧化应激以及调节人类细胞的细胞生长和分化的重要性,我们在这里建议解决Prx研究中仍然存在的最大开放问题。在目标1中,我们将通过研究四种生理相关PTM对人类Prx活性的生物物理和功能影响,加深对催化和对过氧化敏感性的关键决定因素的理解。在目标2中,我们开发了一种新的Prx“模型系统”,适用于NMR和晶体学研究,这将提供前所未有的能力来测量和关联动态功能与结构和功能。在目标3中,我们将进一步了解研究不足,但往往限速,Prx还原反应,评估几个关键Prx的特异性和效率如何取决于寡聚状态,修饰状态和第二个(解析)半胱氨酸的位置。我们还将通过晶体学和/或NMR绘制出相互作用界面。这些努力将解决对Prxs的功能和调节很重要的领域,尽管它们很重要,但尚未得到足够的关注,从而使人们对医学和生物学相关干预措施的理解达到一个新的水平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LESLIE B POOLE其他文献
LESLIE B POOLE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LESLIE B POOLE', 18)}}的其他基金
Redox Regulation of Cysteine-Dependent Peroxidases and Signal Transduction Pathways
半胱氨酸依赖性过氧化物酶和信号转导途径的氧化还原调节
- 批准号:
10548745 - 财政年份:2020
- 资助金额:
$ 35.92万 - 项目类别:
2012 Thiol-based Redox Regulation & Signaling GRC and GRS
2012年硫醇基氧化还原调节
- 批准号:
8252744 - 财政年份:2011
- 资助金额:
$ 35.92万 - 项目类别:
2010 Thiol-based Redox Regulation & Signaling Gordon Research Conference
2010年硫醇基氧化还原法规
- 批准号:
7804202 - 财政年份:2010
- 资助金额:
$ 35.92万 - 项目类别:
Proteomic Profiling of Cancer-Related Redox Signaling Pathways
癌症相关氧化还原信号通路的蛋白质组学分析
- 批准号:
7366882 - 财政年份:2008
- 资助金额:
$ 35.92万 - 项目类别:
Proteomic Profiling of Cancer-Related Redox Signaling Pathways
癌症相关氧化还原信号通路的蛋白质组学分析
- 批准号:
7618024 - 财政年份:2008
- 资助金额:
$ 35.92万 - 项目类别:
Proteomic Profiling of Cancer-Related Redox Signaling Pathways
癌症相关氧化还原信号通路的蛋白质组学分析
- 批准号:
7908083 - 财政年份:2008
- 资助金额:
$ 35.92万 - 项目类别:
Proteomic Profiling of Cancer-Related Redox Signaling Pathways
癌症相关氧化还原信号通路的蛋白质组学分析
- 批准号:
7918510 - 财政年份:2008
- 资助金额:
$ 35.92万 - 项目类别:
Proteomic Profiling of Cancer-Related Redox Signaling Pathways
癌症相关氧化还原信号通路的蛋白质组学分析
- 批准号:
7790611 - 财政年份:2008
- 资助金额:
$ 35.92万 - 项目类别:
Profiling of Redox-Sensitive Signaling Proteins
氧化还原敏感信号蛋白的分析
- 批准号:
7060447 - 财政年份:2005
- 资助金额:
$ 35.92万 - 项目类别:
Profiling of Redox-Sensitive Signaling Proteins
氧化还原敏感信号蛋白的分析
- 批准号:
6861333 - 财政年份:2005
- 资助金额:
$ 35.92万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 35.92万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 35.92万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 35.92万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 35.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 35.92万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 35.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 35.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 35.92万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 35.92万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 35.92万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




