Mechanisms of Gene Silencing of Friedreich's Ataxia
Friedreich共济失调的基因沉默机制
基本信息
- 批准号:9128068
- 负责人:
- 金额:$ 42.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAffectAfferent NeuronsBiochemistryBiological AssayBiological MarkersBlood - brain barrier anatomyBrainCanis familiarisCardiacCardiac MyocytesCardiomyopathiesCause of DeathCell LineCell modelCellsChronicClinicalClinical TrialsDataDevelopmentDiseaseDisease modelEpigenetic ProcessExhibitsFDA approvedFriedreich AtaxiaFunctional disorderGene ActivationGene ExpressionGene Expression ProfileGene SilencingGenesGenetic TranscriptionHealthHeartHistone Deacetylase InhibitorHumanInheritedIntronsLengthLymphocyteMediatingMessenger RNAMethodsMitochondriaMitochondrial ProteinsModelingMolecularMusNeurodegenerative DisordersNeuronsPathologyPatientsPeripheralPharmaceutical ChemistryPharmaceutical PreparationsPharmacodynamicsPhasePreclinical Drug EvaluationProteinsResearch PersonnelSecondary Myocardial DiseasesSpinal GangliaSpinocerebellar AtaxiasTestingTherapeuticTimeToxic effectTrinucleotide Repeatsadenoviral-mediatedbasecell typedesigneffective therapyefficacy trialfrataxinhomologous recombinationhuman subjectimprovedinduced pluripotent stem cellmembermitochondrial dysfunctionmouse modelneuropathologynovelnovel therapeuticspatient populationresearch studytreatment duration
项目摘要
DESCRIPTION (provided by investigator): This application is aimed at understanding the molecular basis for the neurodegenerative disease Friedreich's ataxia (FRDA) and development of novel therapeutics. FRDA is one of the triplet-repeat diseases, where expansion of GAA.TTC repeats within the FXN gene, encoding the essential mitochondrial protein frataxin, leads to epigenetic transcriptional silencing. Loss of frataxin results in a spinocerebellar ataxia with secondary cardiomyopathy, which is the major cause of death in FRDA patients. At present there is no approved therapy for FRDA. Since the GAA.TTC repeats are in an intron, and do not affect the sequence of frataxin protein, gene activation would be of therapeutic value. We identified members of the 2-aminobenzamide class of HDAC inhibitors as potent activators of FXN transcription. These molecules cross the blood brain barrier in mice and canines, exhibit no acute or chronic toxicity, and increase FXN mRNA and frataxin protein levels in the brain and heart in the mouse FRDA model, as well as in circulating lymphocytes in drug-treated FRDA patients in a Phase Ib human clinical trial. While these data provide a proof of concept for this therapeutic approach, our current compounds suffer from pharmacological limitations that preclude their use in chronic treatment. Through a medicinal chemistry effort, we have identified new compounds that have solved these limitations, and one such molecule is being taken forward as a new clinical candidate. During the previous application period, we generated induced pluripotent stem cells (iPSCs) from FRDA patients and differentiated these cells along the neuronal lineage. We have used these cells to model FRDA to study FXN gene silencing and for drug screening. In the present application, we plan to (1) optimize methods for the differentiation of hiPSCs to sensory neurons, the major cell type affected in FRDA, and to use these cells to model the disease through global gene expression studies and markers of mitochondrial dysfunction. For these experiments, we will use helper-dependent adenovirus-mediated homologous recombination to generate isogenic cell lines have the GAA¿TTC repeats "corrected" to normal lengths. (2) Since cardiomyopathy is the major cause of death in FRDA, we will also model the disease in FRDA iPSC-derived cardiomyocytes. (3) We will use these two FRDA cell models to ask if improved HDAC inhibitors can reverse FRDA gene expression signatures and FRDA mitochondrial pathology. (4) Lastly, we will use neuronal cells and patient lymphocytes to identify gene expression biomarkers to be used in Phase II efficacy studies in FRDA patients. Our studies are at the forefront of development of a novel therapeutic for this currently untreatable and lethal disease.
描述(由研究人员提供):这项应用旨在了解神经退行性疾病Friedreich‘s共济失调(FRDA)的分子基础和新疗法的发展。FRDA是一种三联体重复疾病,其中GAA.TTC在FXN基因内重复扩张,编码必需的线粒体蛋白Frataxin,导致表观遗传转录沉默。Frataxin的丢失会导致脊髓小脑性共济失调并继发性心肌病,这是FRDA患者死亡的主要原因。目前还没有批准的治疗FRDA的方法。由于GAA.TTC重复序列位于内含子中,不影响Frataxin蛋白的序列,因此基因激活将具有治疗价值。我们鉴定了2-氨基苯甲酰胺类HDAC抑制剂的成员是FXN转录的有效激活剂。在小鼠和犬的血脑屏障中,这些分子没有表现出急性或慢性毒性,并在小鼠FRDA模型中增加了脑和心脏中的FXN mRNA和Frataxin蛋白水平,在Ib期人类临床试验中增加了药物治疗FRDA患者的循环淋巴细胞中的FXN mRNA和Frataxin蛋白水平。虽然这些数据为这种治疗方法提供了概念上的证据,但我们目前的化合物受到药理学限制,无法将其用于慢性治疗。通过药物化学的努力,我们已经确定了解决这些限制的新化合物,其中一个这样的分子正在作为新的临床候选分子被推进。在之前的应用期间,我们从FRDA患者中培养出诱导多能干细胞(IPSCs),并沿着神经元谱系分化这些细胞。我们已经使用这些细胞来建立FRDA模型,以研究FXN基因沉默和药物筛选。在目前的应用中,我们计划(1)优化HiPSCs向感觉神经元分化的方法,感觉神经元是FRDA中受影响的主要细胞类型,并使用这些细胞通过全球基因表达研究和线粒体功能障碍的标志来建立疾病模型。对于这些实验,我们将使用辅助性腺病毒介导的同源重组来产生等基因的细胞系,这些细胞系的GAA?TTC重复被“纠正”到正常长度。(2)由于心肌病是FRDA的主要死亡原因,我们也将在FRDA iPSC来源的心肌细胞中建立该疾病的模型。(3)我们将使用这两个FRDA细胞模型来研究改进的HDAC抑制剂是否可以逆转FRDA基因表达特征和FRDA线粒体病理。(4)最后,我们将使用神经细胞和患者淋巴细胞来确定用于FRDA患者II期疗效研究的基因表达生物标记物。我们的研究处于开发一种新的治疗这种目前无法治疗的致命疾病的前沿。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOEL M. GOTTESFELD其他文献
JOEL M. GOTTESFELD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOEL M. GOTTESFELD', 18)}}的其他基金
EFFECT OF HDAC INHIBITORS ON THE INTERACTION BETWEEN HDAC3 AND ITS PARTNERS
HDAC 抑制剂对 HDAC3 及其伙伴之间相互作用的影响
- 批准号:
8365841 - 财政年份:2011
- 资助金额:
$ 42.11万 - 项目类别:
Novel Histone Deacetylase Inhibitors as Therapeutics for Huntington's Disease
新型组蛋白脱乙酰酶抑制剂治疗亨廷顿病
- 批准号:
8247872 - 财政年份:2010
- 资助金额:
$ 42.11万 - 项目类别:
Novel Histone Deacetylase Inhibitors as Therapeutics for Huntington's Disease
新型组蛋白脱乙酰酶抑制剂治疗亨廷顿病
- 批准号:
8545908 - 财政年份:2010
- 资助金额:
$ 42.11万 - 项目类别:
Novel Histone Deacetylase Inhibitors as Therapeutics for Huntington's Disease
新型组蛋白脱乙酰酶抑制剂治疗亨廷顿病
- 批准号:
8080842 - 财政年份:2010
- 资助金额:
$ 42.11万 - 项目类别:
Novel Histone Deacetylase Inhibitors as Therapeutics for Huntington's Disease
新型组蛋白脱乙酰酶抑制剂治疗亨廷顿病
- 批准号:
8370049 - 财政年份:2010
- 资助金额:
$ 42.11万 - 项目类别:
Novel Histone Deacetylase Inhibitors as Therapeutics for Huntington's Disease
新型组蛋白脱乙酰酶抑制剂治疗亨廷顿病
- 批准号:
8327227 - 财政年份:2010
- 资助金额:
$ 42.11万 - 项目类别:
Novel Histone Deacetylase Inhibitors as Therapeutics for Huntington's Disease
新型组蛋白脱乙酰酶抑制剂治疗亨廷顿病
- 批准号:
7891960 - 财政年份:2010
- 资助金额:
$ 42.11万 - 项目类别:
Mechanisms of Gene Silencing in Friedreich's Ataxia
弗里德赖希共济失调的基因沉默机制
- 批准号:
7781576 - 财政年份:2009
- 资助金额:
$ 42.11万 - 项目类别:
Mechanisms of Gene Silencing in Friedreich's Ataxia
弗里德赖希共济失调的基因沉默机制
- 批准号:
8525464 - 财政年份:2009
- 资助金额:
$ 42.11万 - 项目类别:
Mechanisms of Gene Silencing of Friedreich's Ataxia
Friedreich共济失调的基因沉默机制
- 批准号:
8759653 - 财政年份:2009
- 资助金额:
$ 42.11万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 42.11万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 42.11万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 42.11万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 42.11万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 42.11万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 42.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 42.11万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 42.11万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 42.11万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 42.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




