Functions of electrical synapses in inhibitory networks
抑制网络中电突触的功能
基本信息
- 批准号:9000755
- 负责人:
- 金额:$ 42.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-01-15 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAxonBrainCell NucleusCellsCommunicationConnexinsCoupledCouplingDataDependenceElectrical SynapseElectrophysiology (science)EpilepsyExcisionGap JunctionsGene ExpressionGene MutationGenesGeneticGoalsHealthIn VitroInhibitory SynapseInterneuronsInvestigationIonsKnock-outKnockout MiceKnowledgeLearningLocationLoxP-flanked alleleMeasurementMental disordersMethodsMotorMusMutationNeocortexNeurologic DysfunctionsNeuronsOpsinOpticsOrganismParvalbuminsPathway interactionsPatternPhasePhysiologicalPhysiologyPlayProbabilityProcessPropertyProsencephalonReporter GenesRoleSensoryShapesSomatostatinStructureSynapsesSystemTestingThalamic structureTimeUrsidae Familybarrel cortexbasebiophysical propertiescell typecognitive functionconnexin 36developmental diseaseexcitatory neurongap junction channelin vitro Modelin vivoinhibitory neuronmind controlneocorticalnervous system disordernoveloptogeneticsprotein expressionrelating to nervous systemresearch studyresponsesomatosensorysoundtool
项目摘要
DESCRIPTION (provided by applicant): This project will investigate the functions of electrical synapses within inhibitory circuits of the mammalian forebrain. "Electrical synapses" are gap junctions that interconnect neurons, and they serve as rapid, bidirectional communication pathways. A considerable amount is known about the basic biophysical properties of mammalian electrical synapses, their locations, and their dependence on the gap junction protein connexin36 (Cx36). Gap junctions can strongly influence the timing, phase, synchrony, probability, and rate of action potentials in pairs and small groups of neurons, yet we still do no know how electrical synapses contribute to larger network functions. The complexity of forebrain circuits has long been an impediment, but powerful new genetic and optical tools can now be brought to bear on these issues. Remarkably, in the mature thalamus and neocortex electrical synapses occur almost exclusively between GABAergic neurons. These junctions are quite specific; they usually interconnect inhibitory neurons of the same subtype in the cortex, and excitatory cells in the mature forebrain rarely express them. This investigation will focus on the roles of electrical synapses that interconnect inhibitory neurons of the thalamus (specifically in the somatosensory thalamic reticular nucleus, TRN), and several subtypes of interneurons in the neocortex (barrel cortex). There are three specific aims. The first is to determine the roles o electrical synapses in thalamocortical network activity, specifically slow (delta, theta) and fast (gamma) network oscillations studied in vitro and in vivo. We will use electrophysiology, selective deletion of Cx36 from subtypes of cortical and thalamic inhibitory cells, and optogenetics to control specific neurons and axonal pathways. The second aim is to test the hypothesis that electrical synapses play an important role in the powerful feedforward inhibitory circuits activated by both thalamocortical and corticothalamic pathways. The third aim is to define the spatial and cell type-specific organization of gap junction-coupled networks in somatosensory segments of the TRN and neocortex. Inhibitory circuits are universal, and essential for all sensory, motor, and cognitive functions; electrical synapses are ubiquitous components of inhibitory circuits. Abnormalities of inhibition are implicated in a wide variety of neurological, psychiatric, and developmental disorders, and mutations in gap junction genes are associated with epilepsy and other neurological dysfunctions. Our investigation will help to clarify the relevance and functions of electrical synapses in inhibitory systems of the forebrain.
描述(由申请人提供):本项目将研究哺乳动物前脑抑制回路中电突触的功能。“电突触”是连接神经元的间隙连接,它们是快速的双向通信途径。关于哺乳动物电突触的基本生物物理特性、它们的位置以及它们对间隙连接蛋白connexin36 (Cx36)的依赖性,我们已经知道了相当多的信息。间隙连接可以强烈地影响成对和小群神经元的动作电位的时间、相位、同步性、概率和速率,但我们仍然不知道电突触如何促进更大的网络功能。前脑回路的复杂性长期以来一直是一个障碍,但现在强大的新遗传和光学工具可以用来解决这些问题。值得注意的是,在成熟的丘脑和新皮层中,电突触几乎只发生在gaba能神经元之间。这些连接是非常特殊的;它们通常连接皮层中相同亚型的抑制性神经元,成熟前脑的兴奋性细胞很少表达它们。本研究将重点关注连接丘脑抑制性神经元(特别是体感丘脑网状核,TRN)和新皮质(桶状皮质)中几种中间神经元亚型的电突触的作用。有三个具体目标。首先是确定电突触在丘脑皮质网络活动中的作用,特别是在体外和体内研究的慢(delta, theta)和快(gamma)网络振荡。我们将利用电生理学、选择性删除皮层和丘脑抑制细胞亚型中的Cx36和光遗传学来控制特定的神经元和轴突通路。第二个目的是验证电突触在丘脑皮质和皮质丘脑通路激活的强大前馈抑制回路中起重要作用的假设。第三个目标是确定TRN和新皮层体感觉部分间隙连接耦合网络的空间和细胞类型特异性组织。抑制回路是普遍存在的,对所有感觉、运动和认知功能都是必不可少的;电突触是抑制回路中无处不在的组成部分。抑制异常与多种神经、精神和发育障碍有关,间隙连接基因突变与癫痫和其他神经功能障碍有关。我们的研究将有助于阐明前脑抑制系统中电突触的相关性和功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Barry W Connors其他文献
Barry W Connors的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Barry W Connors', 18)}}的其他基金
Functions of electrical synapses in inhibitory networks
抑制网络中电突触的功能
- 批准号:
8792635 - 财政年份:2005
- 资助金额:
$ 42.79万 - 项目类别:
Functions of electrical synapses in inhibitory networks
抑制网络中电突触的功能
- 批准号:
9212195 - 财政年份:2005
- 资助金额:
$ 42.79万 - 项目类别:
相似海外基金
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
- 批准号:
10661457 - 财政年份:2023
- 资助金额:
$ 42.79万 - 项目类别:
BRAIN CONNECTS: Comprehensive regional projection map of marmoset with single axon and cell type resolution
大脑连接:具有单轴突和细胞类型分辨率的狨猴综合区域投影图
- 批准号:
10664170 - 财政年份:2023
- 资助金额:
$ 42.79万 - 项目类别:
Rewiring the brain: remote-controlled axon guidance by magnetic nanoparticles to improve Parkinson's therapies
重新布线大脑:通过磁性纳米粒子远程控制轴突引导以改善帕金森氏症的治疗
- 批准号:
22K06430 - 财政年份:2022
- 资助金额:
$ 42.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterization of Whole Brain Demyelination and Axon Damage Using High-resolution Magnetic Resonance Imaging
使用高分辨率磁共振成像表征全脑脱髓鞘和轴突损伤
- 批准号:
10626948 - 财政年份:2022
- 资助金额:
$ 42.79万 - 项目类别:
Gene expression underlying serotonin axon regrowth in the adult mammalian brain
成年哺乳动物大脑中血清素轴突再生的基因表达
- 批准号:
9765426 - 财政年份:2018
- 资助金额:
$ 42.79万 - 项目类别:
In vivo imaging of astrocytes to investigate their functional and structural interactions with the blood brain barrier, immune cells and the demyelinating axon in the animal model of Multiple Sclerosis.
星形胶质细胞的体内成像,以研究其在多发性硬化症动物模型中与血脑屏障、免疫细胞和脱髓鞘轴突的功能和结构相互作用。
- 批准号:
279791496 - 财政年份:2015
- 资助金额:
$ 42.79万 - 项目类别:
Research Grants
Transcriptome-wide analysis of cytosolic polyadenylation events that mediate axon guidance: RNA processing helps wiring the brain
对介导轴突引导的胞质多腺苷酸化事件进行全转录组分析:RNA 处理有助于连接大脑
- 批准号:
253180514 - 财政年份:2014
- 资助金额:
$ 42.79万 - 项目类别:
Research Fellowships
AXON PLASTICITY AND RECOVERY OF FUNCTION AFTER TRAUMATIC BRAIN INJURY
脑外伤后轴突的可塑性和功能恢复
- 批准号:
8171190 - 财政年份:2010
- 资助金额:
$ 42.79万 - 项目类别:
Brain patterning and axon guidance
大脑模式和轴突引导
- 批准号:
394617-2010 - 财政年份:2010
- 资助金额:
$ 42.79万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
AXON PLASTICITY AND RECOVERY OF FUNCTION AFTER TRAUMATIC BRAIN INJURY
脑外伤后轴突的可塑性和功能恢复
- 批准号:
7955835 - 财政年份:2009
- 资助金额:
$ 42.79万 - 项目类别:














{{item.name}}会员




