Systems Immunolobiology of Antibiotic-Persistent MRSA Infection
抗生素持续性 MRSA 感染的系统免疫学
基本信息
- 批准号:9108773
- 负责人:
- 金额:$ 199.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-21 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:Advisory CommitteesAlgorithmsAmericasAnimal ModelAntibiotic ResistanceAntibiotic TherapyAntibioticsAntimicrobial ResistanceAutomobile DrivingBacteremiaBacteriaBacterial Drug ResistanceBiological ProcessBlood CirculationCellsCenters for Disease Control and Prevention (U.S.)CerealsChromosomesClinicalCommunicable DiseasesComplexDaptomycinDataData SetDevelopmentExperimental ModelsExposure toFoundationsGenesGeneticGenetic DeterminismGenomicsGlycopeptide AntibioticsGoalsGoldGrowthHumanImmuneImmune responseImmune systemImmunobiologyImmunogeneticsImmunologyImmunophenotypingIn VitroInfectionIntegration Host FactorsInterventionKnowledgeLaboratoriesLeadLeadershipLifeMethicillin ResistanceMethodsMicrobial BiofilmsModelingMusOryctolagus cuniculusOutcomePatientsPatternPhenotypePredispositionProcessRelapseResearchRiskSamplingSepsisSocietiesStaphylococcus aureusSystemSystems BiologyTechniquesTestingTherapeuticUnited States National Institutes of HealthUrsidae FamilyValidationVancomycinanalytical toolbasebiobankclinically relevantcomparativeexperiencegenetic analysishigh riskimprovedin vivoinnovationinsightmembermethicillin resistant Staphylococcus aureusmicrobialmutantnovelnovel strategiespathogenprediction algorithmpreventpublic health relevanceresearch clinical testingresistant strainresponsetranscriptomics
项目摘要
DESCRIPTION (provided by applicant): Staphylococcus aureus bacteremia (SAB) is a common and life-threatening bloodstream infection that is often caused by methicillin-resistant strains (MRSA). Of urgent concern, up to 30% of SAB patients fail antibiotic treatment even when gold-standard anti-MRSA therapy (vancomycin [VAN] or daptomycin (DAP]) is used. These patients have persistent bacteremia, which frequently results in a dismal clinical outcome. Even though the MRSA isolates from these patients appear to be "susceptible" to VAN or DAP based upon in vitro CLSI breakpoints, these antibiotics fail to clear the bloodstream infection. Such in vivo antibiotic resistance is termed Antibiotic-Persistent MRSA Bacteremia, or APMB. At present, there are few therapeutic options for these life-threatening infections. There is a critical, unmet need to understand the unique intersection of host and pathogen factors driving APMB. Elucidating these factors holds promise to lead to new approaches to prospectively identify patients at risk for developing APMB, and novel strategies to prevent or treat this often devastating infection. Importantly, APMB represents a unique subset of antibiotic resistant infections that differ from biofilm-associated infections due to "antibiotic-tolerant" or
"recalcitrant / relapsing" isolates. APMB isolates are genetically stable, but highly adaptive strains induced by in vivo antibiotic exposure. Thus, mechanisms of persistent infections (APMB) are distinct from antibiotic-tolerant infections. Based on our extensive preliminary data, we hypothesize that APMB results from a three-way interaction among the pathogen, host immune response and antibiotic. We further posit that conventional approaches to study this clinically important phenomenon may be insufficient to understand it. Therefore, we will: 1) analyze the interactions of wild-type and mutant APMB strains with host cells and constituents in vitro, ex vivo, and in discriminative animal models to resolve key genotypic & phenotypic determinants of the S. aureus persistome that drives APMB; 2) leverage our pioneering S. aureus Bacteremia Group (SABG) biorepository of human samples & matched clinical isolates, genomic & transcriptional analysis, and immunophenotyping to define host genetic and immune profiles of APMB during VAN or DAP treatment; and 3) use our powerful systems-based statistical and computational immunology approaches to integrate results of high-throughput genomics and transcriptomics data across studies to model the pathogen-host signatures unique to APMB. Therefore, we will resolve the pathogen and host factors that drive APMB to enable innovative approaches to predict, prevent and treat MRSA bloodstream infections that persist despite antibiotic treatment. These critically needed advances will derive from iterative refinement of studies that bring together proven strengths of an outstanding research team to apply an integrated, systems-based approach. The result will yield robust predictive algorithms for clinical evaluation for improved interventions against MRSA infections. Thus, through leading-edge methods and strategies that are optimized for synergy, our progressively focused studies in this U01 project are ideally responsive to the priorities of the NIH and this "Systems Biology of Antibacterial Resistance" RFA (RFA-AI-14-064).
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael R Yeaman其他文献
Michael R Yeaman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael R Yeaman', 18)}}的其他基金
Systems Epigenomics of Persistent Bloodstream Infection
持续性血流感染的系统表观基因组学
- 批准号:
10551703 - 财政年份:2023
- 资助金额:
$ 199.99万 - 项目类别:
Epigenomic Mechanisms & Contextual Immunity in Persistent MRSA Bacteremia
表观基因组机制
- 批准号:
10551708 - 财政年份:2023
- 资助金额:
$ 199.99万 - 项目类别:
Systems Immunolobiology of Antibiotic-Persistent MRSA Infection
抗生素持续性 MRSA 感染的系统免疫学
- 批准号:
9246423 - 财政年份:2016
- 资助金额:
$ 199.99万 - 项目类别:
Novel Context-Activated Protide Anti-Infectives
新型环境激活蛋白肽抗感染药
- 批准号:
7218790 - 财政年份:2007
- 资助金额:
$ 199.99万 - 项目类别:
Novel Context-Activated Protide Anti-Infectives
新型环境激活蛋白肽抗感染药
- 批准号:
7429814 - 财政年份:2007
- 资助金额:
$ 199.99万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 199.99万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 199.99万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 199.99万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 199.99万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 199.99万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 199.99万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 199.99万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 199.99万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 199.99万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 199.99万 - 项目类别:
Continuing Grant














{{item.name}}会员




