Mechanism of Notch activation by Epsin-dependent ligand endocytosis in Drosophila
果蝇中 Epsin 依赖性配体内吞作用的 Notch 激活机制
基本信息
- 批准号:9102152
- 负责人:
- 金额:$ 30.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:Adaptor Signaling ProteinAddressAffinityAnimalsBindingBiochemicalBiological ModelsCell NucleusCell Surface ReceptorsCellsChimeric ProteinsCleaved cellCoupledD CellsDataDependenceDevelopmentDiagnosticDiseaseDrosophila genusEndocytosisEventFoundationsGene TargetingGeneticGoalsGrantHealthHumanHuman DevelopmentImmune System DiseasesImpairmentLeadLigand BindingLigandsMalignant NeoplasmsMechanicsMediatingMembraneMethodsMissionModelingMolecularNeurologicNuclear ImportNucleic Acid Regulatory SequencesPathway interactionsPeptide HydrolasesPhysiologyPlayPoriferaProteinsProteolysisPublic HealthReagentRecyclingResearchRoleSideSignal TransductionSiteSocietiesSourceStructureTestingTherapeuticTranscription CoactivatorUbiquitinationUnited States National Institutes of HealthWorkadapter proteinbiophysical analysisdevelopmental diseaseepsinhuman diseasein vivoinnovationintercellular communicationmannervous system disordernotch proteinnovelnovel strategiesreceptorresearch studyresponserole modeltooltranscription factorvon Willebrand Factor
项目摘要
DESCRIPTION (provided by applicant): The main goal of this grant is to determine the mechanism of activation of the cell surface receptor Notch by transmembrane ligands of the Delta/Serrate/Lag-2 (DSL) superfamily. DSL-Notch signaling is an important and pervasive mechanism of intercellular communication, conserved in all multi-cellular animals, from sponges to man. It has enormous implications for human health, as genetic and environmental perturbations of DSL-Notch signaling cause a wide range of cancers, as well as developmental, immune, and neurological disorders. Thus, determining how DSL ligands activate Notch is critical for developing diagnostic and therapeutic tools to treat human disease, a central mission of the NIH. Our past work was instrumental in defining the basic mechanism of signal transduction by Notch. Using Drosophila as a model system, we discovered that Notch is a membrane tethered transcription factor that is cleaved in response to ligand, allowing the intracellular domain to enter the nucleus and turn on target genes. In the proposed work, we will address the still unanswered and crucial question of how ligand binding induces the initial cleavage responsible for activating the receptor. We will build on our previous discovery that to activate Notch on signal-receiving cells, DSL ligands must undergo endocytosis in signal-sending cells specifically by the adaptor protein Epsin. This finding, together with recent structural and biophysical studies, has suggested that ligand endocytosis by Epsin induces an allosteric change in the Notch codomain that exposes an otherwise buried cleavage site to the activating protease. In the proposed research we will use new approaches to manipulate ligand and receptor structure in vivo to test three hypotheses. First, that mechanical force generated across the intercellular ligand/receptor bridge is responsible for the allosteric change that renders the receptor susceptible to cleavage. Second, that this force is exerted by the ligand as it undergoes Epsin-dependent endocytosis into the sending cell. Third, that receptor plays an active role in generating this force by (i) inducing the ligand to enter the Epsin pathway, and (ii exerting an opposing force that depends on its own endocytosis. The results of these experiments will either establish the mechanical force model and the role of Epsin- dependent ligand endocytosis in generating the required force, or lead to other testable hypotheses for the basic mechanism by which ligand activates Notch. The innovative methods and reagents we generate will also be applicable to other problems in signal transduction and animal development.2
描述(由申请人提供):该授权的主要目标是确定Delta/Serrate/Lag-2(DSL)超家族的跨膜配体激活细胞表面受体Notch的机制。DSL-Notch信号传导是细胞间通讯的一种重要和普遍的机制,在从海绵到人类的所有多细胞动物中保守。它对人类健康具有巨大的影响,因为DSL-Notch信号传导的遗传和环境干扰导致广泛的癌症,以及发育,免疫和神经系统疾病。因此,确定DSL配体如何激活Notch对于开发治疗人类疾病的诊断和治疗工具至关重要,这是NIH的中心使命。我们过去的工作有助于确定Notch信号转导的基本机制。使用果蝇作为模型系统,我们发现Notch是一种膜束缚的转录因子,其响应于配体而被切割,允许细胞内结构域进入细胞核并打开靶基因。在拟议的工作中,我们将解决仍然没有答案和关键的问题,如何配体结合诱导初始裂解负责激活受体。我们将建立在我们以前的发现,即激活信号接收细胞上的Notch,DSL配体必须在信号发送细胞中特异性地通过衔接蛋白Epsin进行内吞作用。这一发现,连同最近的结构和生物物理学研究,已经表明,配体内吞的Epsin诱导变构变化的Notch共结构域,暴露了一个否则掩埋的切割位点的活化蛋白酶。在拟议的研究中,我们将使用新的方法来操纵体内配体和受体的结构,以测试三个假设。首先,跨细胞间配体/受体桥产生的机械力负责使受体易于裂解的变构变化。第二,这种力是由配体施加的,因为它经历了Epsin依赖性内吞作用进入发送细胞。第三,该受体通过(i)诱导配体进入Epsin途径,和(ii)施加依赖于其自身内吞作用的相反力,在产生这种力中起积极作用。这些实验的结果将建立机械力模型和Epsin依赖性配体内吞作用在产生所需力中的作用,或导致配体激活Notch的基本机制的其他可检验的假设。我们开发的创新方法和试剂也将适用于信号转导和动物发育中的其他问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gary Struhl其他文献
Gary Struhl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gary Struhl', 18)}}的其他基金
Dissecting the roles and molecular mechanisms of Wnt signal transduction at the Drosophila neuromuscular junction
剖析果蝇神经肌肉接头Wnt信号转导的作用和分子机制
- 批准号:
10527669 - 财政年份:2022
- 资助金额:
$ 30.4万 - 项目类别:
Morphogen control of organ growth in Drosophila
果蝇器官生长的形态发生素控制
- 批准号:
10155517 - 财政年份:2018
- 资助金额:
$ 30.4万 - 项目类别:
Morphogen control of organ growth in Drosophila
果蝇器官生长的形态发生素控制
- 批准号:
10390401 - 财政年份:2018
- 资助金额:
$ 30.4万 - 项目类别:
Morphogen control of organ growth in Drosophila
果蝇器官生长的形态发生素控制
- 批准号:
10623564 - 财政年份:2018
- 资助金额:
$ 30.4万 - 项目类别:
Morphogen control of organ growth in Drosophila
果蝇器官生长的形态发生素控制
- 批准号:
10613270 - 财政年份:2018
- 资助金额:
$ 30.4万 - 项目类别:
Morphogen control of organ growth in Drosophila
果蝇器官生长的形态发生素控制
- 批准号:
9922923 - 财政年份:2018
- 资助金额:
$ 30.4万 - 项目类别:
Morphogen control of organ growth in Drosophila
果蝇器官生长的形态发生素控制
- 批准号:
10402173 - 财政年份:2018
- 资助金额:
$ 30.4万 - 项目类别:
Mechanism of Notch activation by Epsin-dependent ligand endocytosis in Drosophila
果蝇中 Epsin 依赖性配体内吞作用的 Notch 激活机制
- 批准号:
8759729 - 财政年份:2014
- 资助金额:
$ 30.4万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
Research Grant