Neuroimaging and Machine Learning to Redefine Anxiety and Depression

神经影像和机器学习重新定义焦虑和抑郁

基本信息

  • 批准号:
    9120715
  • 负责人:
  • 金额:
    $ 5.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-01 至 2017-02-28
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): I aim to identify a data-driven taxonomy of depression and anxiety from multiple neurobiological measures of brain function, physiology and behavior that is not constrained by existing diagnostic boundaries. Anxiety Disorders and Major Depressive Disorder are highly prevalent and together cost over $100 billion per year in care and lost productivity. While the symptoms used in the diagnosis of these disorders convey useful information and reflect real phenomenology, the way in which symptoms are grouped makes for "fuzzy" diagnostic boundaries, with substantial symptom overlap across disorders, yet vast symptom heterogeneity within. Moreover, experiments aiming to identify the neural contribution to dysfunction have been intrinsically tied to these traditional diagnostic categories As a consequence, we do not have a clear understanding of how the neural circuitry underlying depression and anxiety relates to the expressed symptoms at the level of physiology and behavior, independent from these traditional diagnoses. These blurry diagnostic lines hamper our progress toward understanding the mechanisms of dysfunction and developing novel, targeted therapeutics. Therefore, it would be beneficial to establish a complementary characterization of anxiety and depression that reflects cohesive clusters of distinct neural causes. Addressing these issues I propose to use a data driven approach to develop an alternate classification for depression and anxiety. Under Aim 1 I will use computational methods on a rich existing dataset of over 600 participants, to derive dimensional constructs of emotion processing from neuroimaging probes of emotion reactivity and regulation and determine how these constructs are associated with other levels of function spanning behavior, physiology and self-report. Under Aim 2 I will use sparse clustering algorithms to classify individual subjects according to the neuroimaging constructs and then determine how each classification is expressed across behavioral, physiological and self-report symptom measures, independent of traditional diagnosis. To address Aim 3 I will use experimental stress probes to parse state versus trait-like components of the relationships between neuroimaging and each other unit of measurement. The outcome will be a novel classification that will advance our progress toward both understanding the mechanisms of neural dysfunction in depression and anxiety as well as developing novel therapeutics for targeting such dysfunction. Critically, the proposed multi-modal approach utilizes unsupervised machine learning algorithms to identify the underlying patterns within this complex system in a manner that is free from the assumptions of the current diagnostic paradigms. The resulting characterization from this approach will provide a dimensional space to understand the natural variation in neural circuit function and how this variation relates to each person's functional phenotype. Such a characterization will be a significant step forward in transforming the way that depression and anxiety are understood, removing stigma, and allowing novel treatments to be developed from mechanistic models that can be more effectively translated to the clinic.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Goldstein-Piekarski其他文献

Andrea Goldstein-Piekarski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Goldstein-Piekarski', 18)}}的其他基金

Understanding the Mechanistic Interrelationship between Sleep, Co-Occurring Cannabis and Alcohol Use Disorder, and Neurocircuit Dysfunction during Early Abstinence
了解睡眠、同时发生的大麻和酒精使用障碍以及早期戒酒期间神经回路功能障碍之间的机制相互关系
  • 批准号:
    10508457
  • 财政年份:
    2022
  • 资助金额:
    $ 5.05万
  • 项目类别:
Understanding the Mechanistic Interrelationship between Sleep, Co-Occurring Cannabis and Alcohol Use Disorder, and Neurocircuit Dysfunction during Early Abstinence
了解睡眠、同时发生的大麻和酒精使用障碍以及早期戒酒期间神经回路功能障碍之间的机制相互关系
  • 批准号:
    10698188
  • 财政年份:
    2022
  • 资助金额:
    $ 5.05万
  • 项目类别:
A Novel Use of a Sleep Intervention to Target the Emotion Regulation Brain Network and Treat Depression and Anxiety
睡眠干预的新用途是针对情绪调节大脑网络并治疗抑郁和焦虑
  • 批准号:
    10202422
  • 财政年份:
    2020
  • 资助金额:
    $ 5.05万
  • 项目类别:
Sleep Disturbance and Emotion Regulation Brain Dysfunction as Mechanisms of Neuropsychiatric Symptoms in Alzheimer's Dementia
睡眠障碍和情绪调节脑功能障碍是阿尔茨海默氏痴呆症神经精神症状的机制
  • 批准号:
    10450681
  • 财政年份:
    2019
  • 资助金额:
    $ 5.05万
  • 项目类别:
Sleep Disturbance and Emotion Regulation Brain Dysfunction as Mechanisms of Neuropsychiatric Symptoms in Alzheimer's Dementia
睡眠障碍和情绪调节脑功能障碍是阿尔茨海默氏痴呆症神经精神症状的机制
  • 批准号:
    10214486
  • 财政年份:
    2019
  • 资助金额:
    $ 5.05万
  • 项目类别:
Sleep Disturbance and Emotion Regulation Brain Dysfunction as Mechanisms of Neuropsychiatric Symptoms in Alzheimer's Dementia
睡眠障碍和情绪调节脑功能障碍是阿尔茨海默氏痴呆症神经精神症状的机制
  • 批准号:
    9897397
  • 财政年份:
    2019
  • 资助金额:
    $ 5.05万
  • 项目类别:
Sleep Disturbance and Emotion Regulation Brain Dysfunction as Mechanisms of Neuropsychiatric Symptoms in Alzheimer's Dementia
睡眠障碍和情绪调节脑功能障碍是阿尔茨海默氏痴呆症神经精神症状的机制
  • 批准号:
    10021716
  • 财政年份:
    2019
  • 资助金额:
    $ 5.05万
  • 项目类别:
Sleep Loss, Trait Anxiety and Emotional Brain Reactivity
睡眠不足、特质焦虑和大脑情绪反应
  • 批准号:
    8338270
  • 财政年份:
    2011
  • 资助金额:
    $ 5.05万
  • 项目类别:
Sleep Loss, Trait Anxiety and Emotional Brain Reactivity
睡眠不足、特质焦虑和大脑情绪反应
  • 批准号:
    8528733
  • 财政年份:
    2011
  • 资助金额:
    $ 5.05万
  • 项目类别:
Sleep Loss, Trait Anxiety and Emotional Brain Reactivity
睡眠不足、特质焦虑和大脑情绪反应
  • 批准号:
    8255941
  • 财政年份:
    2011
  • 资助金额:
    $ 5.05万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.05万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了