New York Center for Collaborative Research in Common Disease Genomics
纽约常见疾病基因组学合作研究中心
基本信息
- 批准号:9050000
- 负责人:
- 金额:$ 1000万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-14 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdmixtureAlgorithmsAllelesAlzheimer&aposs DiseaseArchitectureAsthmaAutistic DisorderBiological AssayClinical DataCodeCollaborationsCollectionCommunitiesComorbidityComplexComputing MethodologiesDataData SetDatabasesDiseaseEthnic OriginExhibitsFamilyFoundationsFutureGene FrequencyGenesGeneticGenetic RiskGenetic VariationGenomeGenomicsGenotypeGoalsHealthcareHereditary DiseaseHeterogeneityHumanHuman GenomeIndividualJointsLate-Onset DisorderLinkMethodsMicrofluidicsMiningModelingMutationNew YorkNucleotidesOutcomes ResearchPathway interactionsPatient-Focused OutcomesPatientsPhenotypePhysiciansPopulationPopulation HeterogeneityPreventionPublic HealthRNAReadingResearchResearch DesignResearch InstituteResourcesRiskSamplingSequence AnalysisStatistical ModelsTechnologyTimeUnited StatesVariantbasecohortcomputerized data processingcostdata accessdeep sequencingdisorder preventiondrug developmentearly onsetepigenomicsethnic diversityfallsfitnessfrontiergene interactiongenetic variantgenome sequencingimprovedinnovationinsightnext generationnovelrare variantreproductivescreeningsequencing platformtoolwhole genome
项目摘要
In this proposal, we address the enormous challenges common complex diseases pose for genomic
analysis and the enormous opportunities surmounting them offers for advancing healthcare. The common
genetic disorders proposed for study here are believed to have extreme locus heterogeneity, requiring the
analysis of large numbers of samples to comprehensively identify the genomic variants underlying them. We
propose that a combination of deep population studies and joint analysis of SNPs, indels, and structural
variants both in coding and noncoding regions will provide the next level of understanding of common genetic
disorders. Whole genome sequencing (WGS) will be critical to this next-generation approach to the genomics
of complex disease. WGS will need to be accompanied by the technical ability to generate and handle very
large data sets, a particular focus and strength of NYGC. WGS will also need to be accompanied by new
statistical tools and algorithms, which will be developed by the strong core group committed to this proposal.
An overarching goal of this proposal, one that capitalizes on the power of WGS, is to identify disease-
associated variants at the individual nucleotide level. In many cases pathogenic mutations fall in noncoding
regions of the genome, which can only be fruitfully explored with WGS. A major effort will be put into building
new computational strategies to functionally annotate noncoding transcribed sequences, and to build new
datasets to enable such strategies, opening new frontiers of understanding of disease-related regulatory
variants. We will explore a wide spectrum of human variation using the WGS platform, including rare variants
of modest to large effect, de novo variants of large effect, and common variants of small effect. We will
combine available RNA and epigenomic datasets to predict modes of action of risk and identify protective
alleles. These results, combined with the integration of environmental and clinical data, will enhance our
understanding of genetic risk for common disease and lay the groundwork for utilization of personal genomics
in disease prevention and treatment, including the delineation of pathways for drug development.
Many of the population cohorts proposed for study are from New York, which harbors the most diverse
population in the world. Analyzing diverse populations is a critical component of comprehensive common
disease analysis, as effect sizes of individual alleles are believed to vary in different populations due to gene-
gene interactions. Using the genetic admixture present in different populations from NY and throughout the
United States, we will conduct the first systematic study of these interaction effects in many phenotypes.
These aims will be accomplished through widespread collaborations, with genomicists, physicians, and
patients, organized through a focused team at NYGC. They will be enriched by the collaboration and support
from independent Foundations.
在这项提案中,我们解决了常见复杂疾病对基因组构成的巨大挑战
分析和超越它们为推进医疗保健提供的巨大机遇。平凡的
建议在这里研究的遗传性疾病被认为具有极端的基因座异质性,需要
对大量样本进行分析,以全面确定其背后的基因组变异。我们
建议结合深入的人口研究和对SNPs、Indels和结构性的联合分析
编码区和非编码区的变异将提供对共同基因的下一层次的理解
精神错乱。全基因组测序(WGS)将是这种下一代基因组学方法的关键
一种复杂的疾病。WGS将需要伴随着生成和处理
庞大的数据集,是NYGC的一个特别关注和优势。WGS还需要有新的
统计工具和算法,将由致力于这一提议的强大核心小组开发。
这项提案的一个首要目标是利用WGS的力量,识别疾病--
个体核苷酸水平上的相关变异。在许多情况下,致病突变属于非编码
基因组区域,只有用WGS才能卓有成效地探索这些区域。将投入大量精力建设
新的计算策略,对非编码转录序列进行功能注释,并构建新的
支持这种策略的数据集,开辟了理解与疾病相关的监管的新前沿
变种。我们将使用WGS平台探索广泛的人类变异,包括罕见的变异
从中等效应到大效应,从新变种到大效应,以及常见的小效应变种。我们会
结合可用的RNA和表观基因组数据集来预测风险的行动模式并确定保护措施
等位基因。这些结果,再加上环境和临床数据的整合,将增强我们的
了解常见疾病的遗传风险,为利用个人基因组学奠定基础
在疾病预防和治疗方面,包括描绘药物开发的路径。
许多被建议进行研究的人群来自纽约,那里是最多样化的避难所
世界上最大的人口。分析不同的人群是全面公共
疾病分析,因为个体等位基因的效应大小被认为在不同的群体中是不同的,这是由于基因-
基因相互作用。使用来自纽约和整个纽约的不同种群中存在的遗传混合物
在美国,我们将首次对这些相互作用在许多表型中的影响进行系统研究。
这些目标将通过与基因学家、内科医生和
患者,由NYGC的一个专注的团队组织。他们将从合作和支持中得到丰富
来自独立基金会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT B DARNELL其他文献
ROBERT B DARNELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT B DARNELL', 18)}}的其他基金
Combining New Molecular and Informatic Strategies to Find Hidden Ways to Treat Brain Disease
结合新的分子和信息策略来寻找治疗脑疾病的隐藏方法
- 批准号:
10528460 - 财政年份:2016
- 资助金额:
$ 1000万 - 项目类别:
Combining new molecular and informatic strategies to find hidden ways to treat brain disease
结合新的分子和信息学策略来寻找治疗脑部疾病的隐藏方法
- 批准号:
9161392 - 财政年份:2016
- 资助金额:
$ 1000万 - 项目类别:
Combining new molecular and informatic strategies to find hidden ways to treat brain disease
结合新的分子和信息学策略来寻找治疗脑部疾病的隐藏方法
- 批准号:
10056984 - 财政年份:2016
- 资助金额:
$ 1000万 - 项目类别:
Combining new molecular and informatic strategies to find hidden ways to treat brain disease
结合新的分子和信息学策略来寻找治疗脑部疾病的隐藏方法
- 批准号:
10307079 - 财政年份:2016
- 资助金额:
$ 1000万 - 项目类别:
Mapping the mechanisms of protein synthesis-dependent synaptic plasticity
绘制蛋白质合成依赖性突触可塑性的机制
- 批准号:
8703829 - 财政年份:2012
- 资助金额:
$ 1000万 - 项目类别:
Mapping the mechanisms of protein synthesis-dependent synaptic plasticity
绘制蛋白质合成依赖性突触可塑性的机制
- 批准号:
9113688 - 财政年份:2012
- 资助金额:
$ 1000万 - 项目类别:
Mapping the mechanisms of protein synthesis-dependent synaptic plasticity
绘制蛋白质合成依赖性突触可塑性的机制
- 批准号:
8898256 - 财政年份:2012
- 资助金额:
$ 1000万 - 项目类别:
Mapping the mechanisms of protein synthesis-dependent synaptic plasticity
绘制蛋白质合成依赖性突触可塑性的机制
- 批准号:
8412332 - 财政年份:2012
- 资助金额:
$ 1000万 - 项目类别:
相似海外基金
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
- 批准号:
10818088 - 财政年份:2023
- 资助金额:
$ 1000万 - 项目类别:
Admixture Mapping of Coronary Heart Disease and Associated Metabolomic Markers in African Americans
非裔美国人冠心病和相关代谢组标记物的混合图谱
- 批准号:
10571022 - 财政年份:2023
- 资助金额:
$ 1000万 - 项目类别:
Whole Genome Sequencing and Admixture Analyses of Neuropathologic Traits in Diverse Cohorts in USA and Brazil
美国和巴西不同群体神经病理特征的全基因组测序和混合分析
- 批准号:
10590405 - 财政年份:2023
- 资助金额:
$ 1000万 - 项目类别:
NSF Postdoctoral Fellowship in Biology: Coalescent Modeling of Sex Chromosome Evolution with Gene Flow and Analysis of Sexed-versus-Gendered Effects in Human Admixture
NSF 生物学博士后奖学金:性染色体进化与基因流的合并模型以及人类混合中性别与性别效应的分析
- 批准号:
2305910 - 财政年份:2023
- 资助金额:
$ 1000万 - 项目类别:
Fellowship Award
Admixture mapping of mosaic copy number alterations for identification of cancer drivers
用于识别癌症驱动因素的马赛克拷贝数改变的混合图谱
- 批准号:
10608931 - 财政年份:2022
- 资助金额:
$ 1000万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10656719 - 财政年份:2022
- 资助金额:
$ 1000万 - 项目类别:
Genealogical ancestors, admixture, and population history
家谱祖先、混合和人口历史
- 批准号:
2116322 - 财政年份:2021
- 资助金额:
$ 1000万 - 项目类别:
Standard Grant
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
- 批准号:
10307040 - 财政年份:2021
- 资助金额:
$ 1000万 - 项目类别:
Admixture analysis of acute lymphoblastic leukemia in African American children: the ADMIRAL Study
非裔美国儿童急性淋巴细胞白血病的混合分析:ADMIRAL 研究
- 批准号:
10307680 - 财政年份:2021
- 资助金额:
$ 1000万 - 项目类别:














{{item.name}}会员




