CRCNS: US-France Modeling & Predicting BCI Learning from Dynamic Networks
CRCNS:美法建模
基本信息
- 批准号:9145763
- 负责人:
- 金额:$ 12.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-17 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectArchitectureBiomedical EngineeringBrainBrain imagingClinicalCodeCommunicationCommunitiesComputer SimulationConsciousness DisordersDataDevelopmentDevicesDiagnosisEducational workshopElectroencephalographyEngineeringEventFeedbackFosteringFranceFutureGoalsGraphHandHumanIndividualInstitutionInternationalLearningLearning SkillLifeMental disordersMethodsModelingMovementNetwork-basedNeuronal PlasticityNeurorehabilitationNeurosciencesNonverbal CommunicationParis, FrancePathway AnalysisPennsylvaniaPerformancePhysicsProcessPropertyProsthesisPsyche structurePsychological TechniquesPublicationsResearchResearch Project GrantsResolutionResourcesScienceSpinal cord injuryStrokeStructureSystemTechniquesTechnologyTimeTrainingUniversitiesValidationWheelchairsbasebrain computer interfacecohortdesignexperiencefootfundamental researchgraph theoryimprovedinnovationinsightlecturesmental imagerymodels and simulationnervous system disorderneurofeedbackneuroimagingneuromechanismneurophysiologynovelnovel strategiesoutreachpredictive modelingprogramsrelating to nervous systemsignal processingskill acquisitionstatisticssuccesstheoriestoolusability
项目摘要
DESCRIPTION (provided by applicant): This project will bring together expertise in computational and experimental neuroscience, signal processing and network science, statistics, modeling and simulation, to establish innovative methods to model and analyze temporally dynamic brain networks, and to apply these tools to develop predictive models of brain-computer interface (BCI) skill acquisition that can be used to improve performance. Leveraging experimental data and interdisciplinary theoretical techniques, this project will characterize brain networks at multiple temporal and spatial scales, and will develop models to predict the ability to control the BCI as well as methods to engineer BCI frameworks for adapting to neural plasticity. This project will enable a comprehensive understanding of the neural mechanisms of BCI learning, and will foster the design of viable BCI frameworks that improve usability and performance.
Intellectual Merit: As a critical innovation, this project proposes to develop a systematic and rigorous approach based on neuroimaging techniques, signal processing, and network science for the modeling and analysis of temporally dynamic neural processes that characterize BCI skill learning. To achieve these goals, we will organize our research around the following objectives: (i) characterizing multiple spatio-temporal scales of dynamic functional brain networks, (ii) modeling BCI skill acquisition and predicting performance from brain network properties, (iii) simulating coadaptive BCI frameworks using dynamic network-based neural features. Results will first be characterized from pure graph-theoretic and neuroscience perspectives, so as to highlight fundamental research challenges, and then validated to clarify the importance and the applicability of our findings to translational efforts in practical BCI scenarios. Our results wil (i) unveil multi-resolution properties of dynamic brain networks, (ii) identify predictive neuromarkers
for BCI learning, and ultimately (iii) inform the development of coadaptive BCI frameworks sensitive to subject-specific neural plasticity. The two young PIs - one from the Department of Bioengineering at the University of Pennsylvania and one from the ARAMIS team of the "Institut National de Recherche en Informatique et en Automatique" (INRIA) located at the "Institut du Cerveau et de la Moelle epiniere" (ICM) in Paris - bring complementary and interdisciplinary backgrounds to this research project, with a strong track record in network analysis, network neuroscience, multimodal neuroimaging and BCI applications. Their experience and resources will enable the success of this new approach to analyze dynamic networks in BCI learning, design co-adaptive BCI frameworks, and facilitate the use of non-invasive BCI technology for both control of external devices (e.g. neuroprosthetics) as well as neurofeedback applications (e.g. MI-based neurorehabilitation after stroke).
Broader Impacts: This interdisciplinary project proposes a transformative approach to analyze large-scale neural systems, and to model and predict BCI skill acquisition. This research provides novel insights into the temporal interconnection structure of the human brain, and proposes entirely new methods to construct dynamic network-based models of neural plasticity from multimodal neuroimaging data. Results will foster the development of innovative predictive neuromarkers for the diagnosis and treatment of neurological disorders and psychiatric disease. The PIs will bring their findings and innovative techniques to the undergrad and graduate programs at their institutions, disseminate findings via dedicated courses, workshops, and publications, and to the community and local middle/highschools via lectures and STEAM outreach events.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danielle Smith Bassett其他文献
Danielle Smith Bassett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danielle Smith Bassett', 18)}}的其他基金
Guiding epilepsy surgery using network models and Stereo EEG
使用网络模型和立体脑电图指导癫痫手术
- 批准号:
10740473 - 财政年份:2023
- 资助金额:
$ 12.25万 - 项目类别:
Guiding epilepsy surgery using network models and Stereo EEG
使用网络模型和立体脑电图指导癫痫手术
- 批准号:
10845904 - 财政年份:2022
- 资助金额:
$ 12.25万 - 项目类别:
Guiding epilepsy surgery using network models and Stereo EEG
使用网络模型和立体脑电图指导癫痫手术
- 批准号:
10667100 - 财政年份:2022
- 资助金额:
$ 12.25万 - 项目类别:
Guiding epilepsy surgery using network models and Stereo EEG
使用网络模型和立体脑电图指导癫痫手术
- 批准号:
10344259 - 财政年份:2022
- 资助金额:
$ 12.25万 - 项目类别:
Guiding epilepsy surgery using network models and Stereo EEG
使用网络模型和立体脑电图指导癫痫手术
- 批准号:
10625963 - 财政年份:2022
- 资助金额:
$ 12.25万 - 项目类别:
Development and validation of a computational model of higher-order statistical learning on graphs in humans
人类图高阶统计学习计算模型的开发和验证
- 批准号:
10059133 - 财政年份:2020
- 资助金额:
$ 12.25万 - 项目类别:
CRCNS: US-France Data Sharing Proposal: Lowering the barrier of entry to network neuroscience
CRCNS:美法数据共享提案:降低网络神经科学的准入门槛
- 批准号:
10019389 - 财政年份:2019
- 资助金额:
$ 12.25万 - 项目类别:
CRCNS: US-France Data Sharing Proposal: Lowering the barrier of entry to network neuroscience
CRCNS:美法数据共享提案:降低网络神经科学的准入门槛
- 批准号:
9916138 - 财政年份:2019
- 资助金额:
$ 12.25万 - 项目类别:
CRCNS: US-France Data Sharing Proposal: Lowering the barrier of entry to network neuroscience
CRCNS:美法数据共享提案:降低网络神经科学的准入门槛
- 批准号:
10262925 - 财政年份:2019
- 资助金额:
$ 12.25万 - 项目类别:
Linking the Development of Association Cortex Plasticity to Trans-Diagnostic Psychopathology in Youth
将皮层可塑性关联的发展与青少年跨诊断精神病理学联系起来
- 批准号:
10799882 - 财政年份:2018
- 资助金额:
$ 12.25万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 12.25万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 12.25万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 12.25万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 12.25万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 12.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 12.25万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 12.25万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 12.25万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 12.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 12.25万 - 项目类别:
Studentship