Microbubble-Medicated Ultrasonic Therapy for Microvascular Obstruction
微泡超声治疗微血管阻塞
基本信息
- 批准号:9100904
- 负责人:
- 金额:$ 64.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcousticsAcuteAcute myocardial infarctionAdverse eventAnimal ModelAnimal TestingAreaArterial Fatty StreakArteriesAtherosclerosisBackBiologicalCardiovascular DiseasesCaringCategoriesCessation of lifeClinicalCoagulation ProcessCoculture TechniquesCoronaryCoronary heart diseaseDataDistalEFRACEndotheliumEquilibriumFailureFamily suidaeGasesGenesGoalsHealthHeartHindlimbImageIn VitroInfarctionLeftLimb structureLiquid substanceMechanicsMediatingMethodologyMicrobubblesMicroscopyMicrovascular DysfunctionModelingMyocardialNitric OxideObstructionOutcomePatientsPenetrationPerfusionPhenotypePreparationPropertyRattusReperfusion TherapyResidual stateResolutionRiskRodentRoleSafetySeriesSiteSpeedSurfaceSyndromeSystemTestingTherapeuticTherapeutic EmbolizationThrombectomyThromboembolismThrombosisThrombusTranslatingTranslationsUltrasonic TherapyUltrasonographyVascular Smooth MuscleVenousbiological systemsclinical efficacyclinically relevantcomparative efficacydesigneffective therapyfeedingimaging systemimprovedimproved outcomein vitro Modelin vitro testingin vivoin vivo Modelinnovationinsightmicroscopic imagingnovelnovel strategiespercutaneous coronary interventionpreventresearch studyshear stresssuccesstargeted treatmentultrasound biological effectvibration
项目摘要
DESCRIPTION (provided by applicant): Despite advances in percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI), post ischemic microvascular obstruction (MVO) due to distal microembolization of atherothrombotic debris from the site of PCI commonly occurs and leads to failure of reperfusion. Post PCI MVO is associated with worse clinical outcomes, and effective treatments are lacking. Ultrasound (US)-induced cavitation (vibration) of intravenously injected microbubbles (MBs), offers an exciting new approach for treating MVO, which we call "sonoreperfusion" (SRP). While SRP has shown potential for treating venous-like thrombi in large vessels, its effects within the microvasculature, and on MVO comprised of arterial type microthrombi and atherosclerotic debris seen in AMI, are unknown. Furthermore, which US cavitational regime is most effective -- stable, inertial, or a combination thereof - is unknown. Accordingly, in this proposal, we will develop, optimize and translate SRP therapy, culminating in testing of the optimal SRP regime in perhaps the most clinically translatable large animal model of AMI and MVO available. We will first test the relative efficacies of candidate SRP platforms using an in vitro flow model of arterial MVO (Aim 1a), in which we will manipulate US variables that encompass 3 regimes: (1) stable cavitation; (2) inertial cavitation; or (3) a sequential combination of both. To understand mechanisms of action underlying successful regimes, we will study the physical consequences of MB vibrations on local fluid dynamics and tPA clot penetration (Aim 1b). In testing this "mechanical hypothesis," we will be the first to use
an ultra-high speed microscopy system to delve into dynamics of MB-clot interactions and the resulting physical phenomena elicited by the SRP regimes tested in Aim 1a. Insights from Aim 1b will inform further refinements in the SRP regimes --to be iteratively tested in vitro in Aim 1a- from which 3 platforms (top performer for each cavitation category) will emerge for in vivo testing in a new rat hind limb model of arterial MVO in Aim 2a. Here, in addition to efficacy, the clinical safety of each SRP platform will be assessed and factored into the final selection of a single SRP platform-that balances benefit vs. risk -- for use in Aim 3. As the in vitro model in Aim 1a precludes study of bioeffects that may mediate efficacy of a given SRP platform, we will also use the rat hind limb model to study biological effects of US-MB interactions (Aim 2b): We will test the "biologic hypothesis" that MB vibration-induced endothelial shear stress modulates therapeutic NO release and increased activity of endothelial derived hyperpolarizing factor. In Aim 3, we will use the "best" SRP regime emerging from Aim 2, in a new, clinically relevant, atherosclerotic porcine model of AMI and MVO to assess for microvascular salvage. This systematic approach will culminate in a clinically translatable SRP regime and elucidate mechanisms of action which will inform strategies for optimization of efficacy and safety.
描述(由申请人提供):尽管急性心肌梗死(AMI)的经皮冠状动脉介入治疗(PCI)取得了进展,但由于来自PCI部位的动脉粥样硬化血栓碎片的远端微栓塞而导致的缺血后微血管阻塞(MVO)通常会发生并导致再灌注失败。PCI术后MVO与较差的临床结局相关,缺乏有效的治疗方法。超声(US)诱导的静脉注射微泡(MB)的空化(振动),为治疗MVO提供了一种令人兴奋的新方法,我们称之为“声再灌注”(SRP)。虽然SRP已显示出治疗大血管中静脉样血栓的潜力,但其在微血管系统内的作用以及对由AMI中观察到的动脉型微血栓和动脉粥样硬化碎片组成的MVO的作用尚不清楚。此外,美国的空化机制是最有效的-稳定,惯性,或两者的组合-是未知的。因此,在本提案中,我们将开发、优化和转化SRP疗法,最终在可能是最具临床可转化性的AMI和MVO大型动物模型中测试最佳SRP方案。 我们将首先使用动脉MVO的体外血流模型(目标1a)测试候选SRP平台的相对有效性,其中我们将操纵包含3种方案的US变量:(1)稳定空化;(2)惯性空化;或(3)两者的顺序组合。为了了解成功方案的作用机制,我们将研究MB振动对局部流体动力学和tPA凝块渗透的物理后果(目的1b)。在测试这个“机械假说”时,我们将首先使用
超高速显微镜系统,用于深入研究MB-凝块相互作用的动力学以及目标1a中测试的SRP方案引起的物理现象。目标1b的见解将为SRP方案的进一步改进提供信息-在目标1a中进行体外迭代测试-从中将出现3个平台(每个空化类别的最佳表现者),用于在目标2a中的动脉MVO的新大鼠后肢模型中进行体内测试。在此,除了有效性之外,还将评估每个SRP平台的临床安全性,并将其作为最终选择单个SRP平台的因素-平衡获益与风险-用于目标3。由于目标1a中的体外模型排除了可能介导给定SRP平台疗效的生物效应研究,我们还将使用大鼠后肢模型研究US-MB相互作用的生物效应(目标2b):我们将检验“生物学假设”,即MB振动诱导的内皮剪切应力调节治疗性NO释放和内皮源性超极化因子活性增加。在目标3中,我们将在一个新的、临床相关的、动脉粥样硬化的AMI和MVO猪模型中使用目标2中出现的“最佳”SRP方案,以评估微血管挽救。这种系统性方法将最终形成临床上可翻译的SRP方案,并阐明作用机制,这将为优化疗效和安全性的策略提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John J Pacella其他文献
1118-79 Drag reduction by polymer infusion: A new mechanism to enhance microcirculatory perfusion for the treatment of ischemia
- DOI:
10.1016/s0735-1097(04)91227-2 - 发表时间:
2004-03-03 - 期刊:
- 影响因子:
- 作者:
John J Pacella;Erxiong Lu;Joan Gretton;David Fischer;Marina V Kameneva;Flordeliza S Villanueva - 通讯作者:
Flordeliza S Villanueva
John J Pacella的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John J Pacella', 18)}}的其他基金
Ultrasound Targeted Microbubble Cavitation to Treat Coronary Microvascular Obstruction
超声靶向微泡空化治疗冠状动脉微血管阻塞
- 批准号:
10181828 - 财政年份:2021
- 资助金额:
$ 64.2万 - 项目类别:
Focal delivery of nitro-oleic acid using ultrasound targeted microbubble cavitation for the treatment of microvascular obstruction
利用超声靶向微泡空化作用局部递送硝基油酸治疗微血管阻塞
- 批准号:
10343829 - 财政年份:2021
- 资助金额:
$ 64.2万 - 项目类别:
Ultrasound Targeted Microbubble Cavitation to Treat Coronary Microvascular Obstruction
超声靶向微泡空化治疗冠状动脉微血管阻塞
- 批准号:
10406302 - 财政年份:2021
- 资助金额:
$ 64.2万 - 项目类别:
Ultrasound Targeted Microbubble Cavitation to Treat Coronary Microvascular Obstruction
超声靶向微泡空化治疗冠状动脉微血管阻塞
- 批准号:
10610782 - 财政年份:2021
- 资助金额:
$ 64.2万 - 项目类别:
Microbubble-Medicated Ultrasonic Therapy for Microvascular Obstruction
微泡超声治疗微血管阻塞
- 批准号:
9256527 - 财政年份:2015
- 资助金额:
$ 64.2万 - 项目类别:
Myocardial Flow Enhancement with Drag Reducing Polymers: Microvascular Mechanisms
使用减阻聚合物增强心肌血流:微血管机制
- 批准号:
7185603 - 财政年份:2007
- 资助金额:
$ 64.2万 - 项目类别:
Myocardial Flow Enhancement with Drag Reducing Polymers: Microvascular Mechanisms
使用减阻聚合物增强心肌血流:微血管机制
- 批准号:
8055490 - 财政年份:2007
- 资助金额:
$ 64.2万 - 项目类别:
Myocardial Flow Enhancement with Drag Reducing Polymers: Microvascular Mechanisms
使用减阻聚合物增强心肌血流:微血管机制
- 批准号:
7768449 - 财政年份:2007
- 资助金额:
$ 64.2万 - 项目类别:
Myocardial Flow Enhancement with Drag Reducing Polymers: Microvascular Mechanisms
使用减阻聚合物增强心肌血流:微血管机制
- 批准号:
7363611 - 财政年份:2007
- 资助金额:
$ 64.2万 - 项目类别:
Myocardial Flow Enhancement with Drag Reducing Polymers: Microvascular Mechanisms
使用减阻聚合物增强心肌血流:微血管机制
- 批准号:
7609086 - 财政年份:2007
- 资助金额:
$ 64.2万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 64.2万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 64.2万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 64.2万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 64.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 64.2万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 64.2万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 64.2万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 64.2万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 64.2万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 64.2万 - 项目类别:
Standard Grant