Myocardial Flow Enhancement with Drag Reducing Polymers: Microvascular Mechanisms
使用减阻聚合物增强心肌血流:微血管机制
基本信息
- 批准号:7609086
- 负责人:
- 金额:$ 12.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-03-01 至 2012-02-29
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdhesionsAreaArtsAttenuatedAutomobile DrivingBehaviorBiological PreservationBloodBlood VesselsBlood VolumeBlood capillariesBlood flowCanis familiarisCapillary ResistanceCardiologyCause of DeathCell CommunicationCell Cycle KineticsCellsClassificationClinicalComplexContrast echocardiography procedureCoronaryCoronary StenosisCoronary arteryCoronary heart diseaseDataDevelopmentDiseaseEndothelial CellsErythrocytesExperimental Animal ModelExperimental DesignsFailureFellowshipFundingGoalsHealthHealth BenefitHematocrit procedureHemorrhagic ShockHospitalizationImaging TechniquesIn VitroIndividualInterventionInvestigationKineticsKnowledgeLeadLearningLeukocytesLiquid substanceMeasurementMeasuresMechanicsMediatingMethodologyMicrobubblesMicrocirculationMicroscopicMicrospheresModelingMolecular WeightMorphologyMyocardialMyocardial IschemiaMyocardial perfusionOrganOxygenPerfusionPhysicsPhysiologicalPhysiologyPlasmaPolymersPrincipal InvestigatorProcessPropertyRadiolabeledRattusResearchResearch PersonnelResistanceRestRheologySimulateStenosisTechniquesTestingTherapeuticTissuesTracerTrainingTranslationsUltrasonographyVascular SystemVascular resistanceVasodilationVasomotorWidthWorkabstractingacute coronary syndromeanimal dataarteriolecapillaryclinical applicationcostdensitydesignfallsfluid flowhemodynamicsimprovedin vivoinsightintravital microscopymacromoleculenovel strategiesnovel therapeuticspressureprogramsradiotracerresistance mechanismskillstissue oxygenationtooltreatment strategy
项目摘要
DESCRIPTION (provided by applicant):
Coronary heart disease is the leading cause of death worldwide. In 2001 there were 2 million CHD hospitalizations with an annual cost of $133 billion. Current strategies for the treatment of acute coronary syndromes, which includes restoring epicardial coronary artery patency, do not consistently restore microvascular perfusion, which has adverse clinical consequences. Drag-reducing polymers (DRPs) may fill this void. DRPs reduce vascular resistance, potentially by targeting the rheology and hydrodynamics of blood flow. Under AHA support, the Principal Investigator has studied the effects of DRPs on myocardial perfusion in the setting of graded canine coronary stenoses. He has found that minute intravascular concentrations of DRPs normalize myocardial perfusion and improve coronary flow reserve by decreasing capillary resistance, and this may provide a novel approach for the treatment of coronary heart disease. Traditionally, DRPs are known to augment pipe flow through reductions in fluid resistance. In vascular systems, similar mechanisms are theorized but the precise microvascular mechanism of action is unknown. Having established the potential health benefits of DRPs in experimental animal models, further clinical development as a therapeutic strategy will require a greater understanding of its microvascular mechanisms. Accordingly, this research program builds on the Pi's intact animal data by investigating DRPs effects at the microcirculatory level. The Principal Investigator will learn sophisticated tools for intravital microcirculation research, including measurements of microvascular pressure, microvascular hematocrit, and red cell and leukocyte kinetics. These techniques will be used to determine whether DRPs enhance perfusion through (1) Alterations in hydrodynamics by increasing precapillary driving pressure; (2) Changing microvascular red cell distribution; (3) Altering leukocyte-endothelial interactions; or a combination thereof. The Principal Investigator's short term goal is to gain a fund of knowledge in the field of the microcirculation and to learn the techniques to answer the questions posed by this proposal. He will then apply his new skill set to address questions in his field of clinical expertise, interventional cardiology. His ultimate goal is to improve treatments aimed at the coronary microcirculation, including treatment of coronary 'no-reflow,' by delving into its microvascular mechanisms. By interrogating the microvascular mechanisms of DRPs, this proposal provides a vehicle to learn these methodologies.
(End of Abstract)
描述(由申请人提供):
冠心病是世界范围内的主要死亡原因。2001年,有200万冠心病住院治疗,每年的费用为1330亿美元。目前用于治疗急性冠状动脉综合征的策略,包括恢复心外膜冠状动脉通畅性,不能持续地恢复微血管灌注,这具有不良的临床后果。减阻聚合物(DRP)可以填补这一空白。DRP可能通过靶向血流的流变学和流体动力学来降低血管阻力。在AHA的支持下,主要研究者研究了在分级犬冠状动脉狭窄情况下DRP对心肌灌注的影响。他发现,微量的血管内浓度的DRP使心肌灌注正常化,并通过降低毛细血管阻力改善冠状动脉血流储备,这可能为冠心病的治疗提供一种新的方法。传统上,已知DRP通过降低流体阻力来增加管流。在血管系统中,类似的机制被理论化,但精确的微血管作用机制尚不清楚。在实验动物模型中确定了DRP的潜在健康益处后,进一步的临床开发作为治疗策略将需要对其微血管机制有更深入的了解。因此,本研究计划建立在Pi的完整动物数据的基础上,通过研究DRPs在微循环水平的影响。主要研究者将学习活体微循环研究的复杂工具,包括微血管压力,微血管血细胞比容,红细胞和白细胞动力学的测量。这些技术将用于确定DRP是否通过(1)通过增加毛细血管前驱动压力改变流体动力学;(2)改变微血管红细胞分布;(3)改变白细胞-内皮相互作用;或其组合来增强灌注。主要研究者的短期目标是获得微循环领域的知识,并学习回答本提案提出的问题的技术。然后,他将应用他的新技能来解决他的临床专业领域,介入心脏病学的问题。他的最终目标是通过深入研究其微血管机制来改善针对冠状动脉微循环的治疗,包括冠状动脉“无复流”的治疗。通过询问DRPs的微血管机制,本建议提供了一个工具来学习这些方法。
(End摘要)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John J Pacella其他文献
1118-79 Drag reduction by polymer infusion: A new mechanism to enhance microcirculatory perfusion for the treatment of ischemia
- DOI:
10.1016/s0735-1097(04)91227-2 - 发表时间:
2004-03-03 - 期刊:
- 影响因子:
- 作者:
John J Pacella;Erxiong Lu;Joan Gretton;David Fischer;Marina V Kameneva;Flordeliza S Villanueva - 通讯作者:
Flordeliza S Villanueva
John J Pacella的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John J Pacella', 18)}}的其他基金
Ultrasound Targeted Microbubble Cavitation to Treat Coronary Microvascular Obstruction
超声靶向微泡空化治疗冠状动脉微血管阻塞
- 批准号:
10181828 - 财政年份:2021
- 资助金额:
$ 12.62万 - 项目类别:
Focal delivery of nitro-oleic acid using ultrasound targeted microbubble cavitation for the treatment of microvascular obstruction
利用超声靶向微泡空化作用局部递送硝基油酸治疗微血管阻塞
- 批准号:
10343829 - 财政年份:2021
- 资助金额:
$ 12.62万 - 项目类别:
Ultrasound Targeted Microbubble Cavitation to Treat Coronary Microvascular Obstruction
超声靶向微泡空化治疗冠状动脉微血管阻塞
- 批准号:
10406302 - 财政年份:2021
- 资助金额:
$ 12.62万 - 项目类别:
Ultrasound Targeted Microbubble Cavitation to Treat Coronary Microvascular Obstruction
超声靶向微泡空化治疗冠状动脉微血管阻塞
- 批准号:
10610782 - 财政年份:2021
- 资助金额:
$ 12.62万 - 项目类别:
Microbubble-Medicated Ultrasonic Therapy for Microvascular Obstruction
微泡超声治疗微血管阻塞
- 批准号:
9100904 - 财政年份:2015
- 资助金额:
$ 12.62万 - 项目类别:
Microbubble-Medicated Ultrasonic Therapy for Microvascular Obstruction
微泡超声治疗微血管阻塞
- 批准号:
9256527 - 财政年份:2015
- 资助金额:
$ 12.62万 - 项目类别:
Myocardial Flow Enhancement with Drag Reducing Polymers: Microvascular Mechanisms
使用减阻聚合物增强心肌血流:微血管机制
- 批准号:
7185603 - 财政年份:2007
- 资助金额:
$ 12.62万 - 项目类别:
Myocardial Flow Enhancement with Drag Reducing Polymers: Microvascular Mechanisms
使用减阻聚合物增强心肌血流:微血管机制
- 批准号:
8055490 - 财政年份:2007
- 资助金额:
$ 12.62万 - 项目类别:
Myocardial Flow Enhancement with Drag Reducing Polymers: Microvascular Mechanisms
使用减阻聚合物增强心肌血流:微血管机制
- 批准号:
7768449 - 财政年份:2007
- 资助金额:
$ 12.62万 - 项目类别:
Myocardial Flow Enhancement with Drag Reducing Polymers: Microvascular Mechanisms
使用减阻聚合物增强心肌血流:微血管机制
- 批准号:
7363611 - 财政年份:2007
- 资助金额:
$ 12.62万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 12.62万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 12.62万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 12.62万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 12.62万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 12.62万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 12.62万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 12.62万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 12.62万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 12.62万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 12.62万 - 项目类别:
Research Grant