Augmenting TOPMed WGS studies across the comprehensive spectrum of short tandem repeats (STRs).
在短串联重复序列 (STR) 的综合范围内增强 TOPMed WGS 研究。
基本信息
- 批准号:9170599
- 负责人:
- 金额:$ 11.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-22 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsArchitectureBase SequenceBiologicalCardiovascular systemCommunitiesComplementComplexDNA copy numberDataData SetDepositionDetectionDiseaseFreezingFundingGene FrequencyGeneticGenetic studyGenomeGenomic SegmentGenotypeGoalsGoldHeart DiseasesHematological DiseaseHeritabilityHumanIndividualInheritance PatternsLengthLungLung diseasesMethodsMinisatellite RepeatsMitochondriaMitochondrial DNAMutateNational Heart, Lung, and Blood InstituteNuclear FamilyPlatinumPopulationReadingRecurrenceReportingResearch PersonnelResourcesSamplingSequence AlignmentShort Tandem RepeatSiteSleep DisordersSoftware ToolsTechnologyTrans-Omics for Precision MedicineVariantadjudicatebasedisorder riskgenetic variantgenome sequencinggenome wide association studyimprovedinnovationinsertion/deletion mutationinsightinterestnovelpetabyteprogramstelomeretooltraitwhole genome
项目摘要
SUMMARY
The NHLBI TOPMed whole genome sequencing (WGS) studies are generating unprecedented scale of
sequence reads, totaling >2 quadrillion bases and >300 million variants across >20,000 individuals.
While >97% of accessible genomic regions are be exhaustively interrogated through existing variant
calling methods, ~3% repeat-rich genomic regions are insufficiently interrogated due to limited ability to
call short tandem repeats (STRs). Because ~50% short insertions and deletions (indels) are found in
repeat-rich regions of genome, it is important to comprehensively call STRs to reach near-complete
sensitivity to identify disease-causing variants from TOPMed WGS studies.
In this application, we build on our record of developing innovative methods and analyzing petabytes of
TOPMed WGS reads to generate comprehensive and accurate short variant calls, capitalizing on STRs,
from TOPMed WGS studies. We leverage related and duplicated samples to improve the quality of STRs.
We also propose to estimate mitochondrial DNA copy numbers and telomere lengths from the sequence
data, and perform genome-wide association studies to demonstrate the power of the new STR-augmented
callset.
总结
NHLBI TOPM全基因组测序(WGS)研究正在产生前所未有的规模,
序列读段,总计>2个四倍体碱基和> 3亿个变体,跨越> 20,000个个体。
虽然>97%的可接近的基因组区域通过现有的变体被详尽地询问,
调用方法,约3%的重复丰富的基因组区域由于有限的能力,
短串联重复序列(STR)。因为约50%的短插入和缺失(indels)被发现在
重复序列丰富的基因组区域,重要的是要全面调用STR,以达到接近完整的
从TOPMed WGS研究中识别致病变异的敏感性。
在这个应用程序中,我们建立在我们开发创新方法和分析PB的记录上。
TOPMed WGS读取以产生全面和准确的短变体调用,利用STR,
来自TOPMed WGS研究。我们利用相关和重复的样本来提高可疑交易报告的质量。
我们还建议估计线粒体DNA拷贝数和端粒长度的序列
数据,并进行全基因组关联研究,以证明新的STR增强的力量
callset。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyun Min Kang其他文献
Hyun Min Kang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyun Min Kang', 18)}}的其他基金
Scalable and Translational Analysis Tools on the Cloud for Deep Integrative Omics Data
用于深度整合组学数据的云上可扩展和转化分析工具
- 批准号:
9312552 - 财政年份:2017
- 资助金额:
$ 11.12万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 11.12万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 11.12万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 11.12万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 11.12万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 11.12万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 11.12万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 11.12万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 11.12万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 11.12万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 11.12万 - 项目类别:
Standard Grant