Scalable and Translational Analysis Tools on the Cloud for Deep Integrative Omics Data

用于深度整合组学数据的云上可扩展和转化分析工具

基本信息

  • 批准号:
    9312552
  • 负责人:
  • 金额:
    $ 54.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-15 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

SUMMARY The NHLBI Trans-Omics for Precision Medicine (TOPMed) program aims to provide high- priority studies of heart, lung, blood and sleep disorders (HLBS) with high-quality genomic data. This year, the program will deeply sequence >60,000 genomes to characterize DNA sequence variation at scale. It is expected that >400 million genetic variants will be identified. In later phases, it is expected that rich genomic assays will be applied to an equally large number of samples. In a pilot phase, these additional assays will include ~3,000 transcriptomes, ~2,000 methylation profiles, and ~2,000 metabolomics profiles. Data on this scale opens up many opportunities for discovery and analysis but also poses significant challenges. RFA-HL-17-011, entitled “NHLBI TOPMed Program: Integrative Omics Approaches for Analysis of TOPMed Data (U01)” is intended to stimulate development of computational and statistical methods and tools that enable innovative and scalable analyses genomic resource. Our group has a long history in the development of specialized, state-of-the- art methods and tools for the processing and analysis of large genomic datasets. We have a history of leadership in varied resources, ranging from the Mouse HapMap Project, to 1000 Genomes Project, to ENCODE, and including the NHLBI’s TOPMed program. In this application, we propose to develop innovative and practical methods to enable informative genomic analysis at scale. These methods encompass computational tools to rapidly scale deep GWAS, statistical methods for robust and powerful integrative omics analysis, and visualization methods for integrative interpretation of omics genetics results. We will implement these methods into cost-effective, easy-to-use, and well-documented software packages that facilitate understanding of molecular mechanisms involved in HLBS disorders. A key component of the proposal is the deployment of these tools on commercial clouds, providing accessible interface to investigators without direct access to a local high-throughput compute and data storage facility. The resulting tools will empower a wide range of scientists to run best-in-class methods to accelerate discovery of new treatments for HLBS disorders.
总结 NHLBI精准医学跨组学(TOPMed)计划旨在提供高水平的 心脏,肺,血液和睡眠障碍(HLBS)的高质量基因组数据的优先研究。 今年,该计划将对超过60,000个基因组进行深度测序,以表征DNA序列 在规模上的变化。预计将识别出超过4亿个遗传变异。在以后的 阶段,预计丰富的基因组测定将应用于同样大量的 样品在试点阶段,这些额外的检测将包括约3,000个转录组,约2,000个 甲基化图谱和约2,000个代谢组学图谱。 这种规模的数据为发现和分析提供了许多机会,但也带来了 重大挑战。RFA-HL-17-011,标题为“NHLBI TOPMed计划:集成组学 TOPM数据分析方法(U 01)”旨在促进 计算和统计方法和工具,使创新和可扩展的分析 基因组资源我们集团在专业化、国家级的发展方面有着悠久的历史, 用于处理和分析大型基因组数据集的现有技术方法和工具。我们有一个 领导各种资源的历史,从小鼠HapMap项目到1000 基因组计划,编码,并包括NHLBI的TOPMed计划。 在本申请中,我们建议开发创新和实用的方法, 大规模的基因组分析。这些方法包括计算工具, 快速扩展深度GWAS,用于强大的综合组学分析的统计方法, 以及用于组学遗传学结果的综合解释的可视化方法。我们将 将这些方法实现为具有成本效益、易于使用且文档齐全的软件 有助于理解HLBS疾病的分子机制的软件包。一 该提案的关键组成部分是在商业云上部署这些工具, 为调查人员提供无障碍界面,而无需直接访问本地高通量 计算和数据存储设施。由此产生的工具将使广大科学家能够 运行一流的方法,以加速发现HLBS疾病的新疗法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hyun Min Kang其他文献

Hyun Min Kang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hyun Min Kang', 18)}}的其他基金

Augmenting TOPMed WGS studies across the comprehensive spectrum of short tandem repeats (STRs).
在短串联重复序列 (STR) 的综合范围内增强 TOPMed WGS 研究。
  • 批准号:
    9170599
  • 财政年份:
    2016
  • 资助金额:
    $ 54.09万
  • 项目类别:

相似海外基金

Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
  • 批准号:
    502556
  • 财政年份:
    2024
  • 资助金额:
    $ 54.09万
  • 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
  • 批准号:
    10659303
  • 财政年份:
    2023
  • 资助金额:
    $ 54.09万
  • 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
  • 批准号:
    10674405
  • 财政年份:
    2023
  • 资助金额:
    $ 54.09万
  • 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
  • 批准号:
    10758772
  • 财政年份:
    2023
  • 资助金额:
    $ 54.09万
  • 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
  • 批准号:
    10676499
  • 财政年份:
    2023
  • 资助金额:
    $ 54.09万
  • 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
  • 批准号:
    2748611
  • 财政年份:
    2022
  • 资助金额:
    $ 54.09万
  • 项目类别:
    Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
  • 批准号:
    10532032
  • 财政年份:
    2022
  • 资助金额:
    $ 54.09万
  • 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
  • 批准号:
    22K05630
  • 财政年份:
    2022
  • 资助金额:
    $ 54.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
  • 批准号:
    10525070
  • 财政年份:
    2022
  • 资助金额:
    $ 54.09万
  • 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
  • 批准号:
    10689017
  • 财政年份:
    2022
  • 资助金额:
    $ 54.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了