Develop and Apply a Novel Genome-wide Mendelian Randomization Method to Examine Relationship between Obesity and Lung Cancer
开发并应用新型全基因组孟德尔随机化方法来检查肥胖与肺癌之间的关系
基本信息
- 批准号:9025306
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-12-11 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAffectBiologicalBody Weight decreasedBody mass indexColon CarcinomaComplexDataDevelopmentDiseaseEndometrial CarcinomaEpidemiologic StudiesEtiologyFutureGenesGeneticHeritabilityIndividualInheritedInvestigationKnowledgeLeadLinkMalignant NeoplasmsMalignant neoplasm of lungMethodsModelingObesityPlaguePublic HealthRandomizedResearchResidual stateResourcesRiskRisk FactorsRoleSample SizeSmokingSmoking StatusStatistical MethodsSubgroupSystematic BiasTimeWaist-Hip RatioWeightWeight Gainbasecancer riskcancer typecost efficientepidemiologic datagenetic variantgenome wide association studygenome-wideimprovedinstrumentinterestmalignant breast neoplasmnovelprospectiveprotective effectpublic health relevancesimulationtooltraitwaist circumference
项目摘要
DESCRIPTION (provided by applicant): Lung cancer is one of the most common cancers worldwide. While obesity is a strong risk factor for certain types of cancer, such as colon, breast
and endometrial cancers, many epidemiological studies have consistently indicated an inverse association between body mass index (BMI) and risk of lung cancer after adjusting for other established risk factors. It is largely controversial whether the observed inverse association is due to the biological "genuine" effects of BMI or systematic biases. Mendelian randomization (MR) is an analytical approach that uses genetic variants as the instrumental variable (IV) to infer the causal relationship between an exposure variable and disease. However, because of the lack of efficient statistical tools, MR often requires an extremely large sample size to achiev adequate statistical power. In this proposed study, we will develop a novel statistical method that utilizes genome wide association study (GWAS) data to construct the IV for obesity traits in MR analysis. The major advantage of this approach is that it can unravel the missing heritability of obesity traits that is not accounted for by the known genetic variants, and thereby provide substantially improved statistical power. Because this study will utilize the existing individual GWAS data as well as detailed epidemiologic data from about 20,000 lung cancer cases and 20,000 controls in TRICL (Transdisciplinary Research in Cancer of the Lung), it will be conducted in an extremely cost-efficient manner. This study will provide a unique opportunity to answer the longstanding question of whether there are causal effects of obesity traits on lung cancer risk, potentially to open new avenues for further studies in understanding the etiology of lung cancer, and to provide important statistical tools for facilitating investigation of the causa relationship between risk factors and diseases in general.
描述(由申请人提供):肺癌是全世界最常见的癌症之一。虽然肥胖是某些类型癌症的强烈危险因素,例如结肠癌、乳腺癌
和子宫内膜癌,许多流行病学研究一致表明,在调整其他已确定的危险因素后,体重指数 (BMI) 与肺癌风险之间呈负相关。所观察到的负相关是由于 BMI 的生物学“真实”效应还是系统偏差,这一点存在很大争议。孟德尔随机化 (MR) 是一种使用遗传变异作为工具变量 (IV) 来推断暴露变量与疾病之间因果关系的分析方法。然而,由于缺乏有效的统计工具,MR往往需要极大的样本量才能获得足够的统计功效。在这项拟议的研究中,我们将开发一种新的统计方法,利用全基因组关联研究 (GWAS) 数据来构建 MR 分析中肥胖特征的 IV。这种方法的主要优点是,它可以揭示已知遗传变异无法解释的肥胖性状缺失的遗传性,从而提供显着改善的统计功效。由于这项研究将利用现有的个体 GWAS 数据以及 TRICL(肺癌跨学科研究)中约 20,000 例肺癌病例和 20,000 例对照的详细流行病学数据,因此将以极具成本效益的方式进行。这项研究将为回答肥胖特征是否与肺癌风险之间存在因果关系这一长期存在的问题提供一个独特的机会,有可能为了解肺癌病因学的进一步研究开辟新途径,并为促进研究危险因素与一般疾病之间的因果关系提供重要的统计工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GLORIA YUEN FUN HO其他文献
GLORIA YUEN FUN HO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GLORIA YUEN FUN HO', 18)}}的其他基金
Serum Levels of EGFR-Signaling-Network Activators/Inhibitor and Lung Cancer Risk
EGFR 信号网络激活剂/抑制剂的血清水平与肺癌风险
- 批准号:
8135958 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Serum Levels of EGFR-Signaling-Network Activators/Inhibitor and Lung Cancer Risk
EGFR 信号网络激活剂/抑制剂的血清水平与肺癌风险
- 批准号:
8322156 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Serum Levels of EGFR-Signaling-Network Activators/Inhibitor and Lung Cancer Risk
EGFR 信号网络激活剂/抑制剂的血清水平与肺癌风险
- 批准号:
7992881 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Aspirin, Inflammation Markers, and Colorectal Adenoma
阿司匹林、炎症标志物和结直肠腺瘤
- 批准号:
6908249 - 财政年份:2004
- 资助金额:
$ 20万 - 项目类别:
Aspirin, Inflammation Markers, and Colorectal Adenoma
阿司匹林、炎症标志物和结直肠腺瘤
- 批准号:
6810196 - 财政年份:2004
- 资助金额:
$ 20万 - 项目类别:
Aspirin, Inflammation Markers, and Colorectal Adenoma
阿司匹林、炎症标志物和结直肠腺瘤
- 批准号:
7102623 - 财政年份:2004
- 资助金额:
$ 20万 - 项目类别:
Polymorphisms of INS/IGF Signal Pathways & Female Cancer
INS/IGF信号通路多态性
- 批准号:
6932498 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant