Radiofrequency Remote Control of Enzyme-Nanocluster Conjugates
酶-纳米团簇缀合物的射频远程控制
基本信息
- 批准号:9061746
- 负责人:
- 金额:$ 27.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAmyloidAspartameBacillus (bacterium)BiologicalBiological AssayBiological ProcessBiophysicsBudgetsCaliberChargeCoupledDependenceDependencyDevelopmentEnzymatic BiochemistryEnzyme ActivationEnzyme KineticsEnzyme TestsEnzymesFrequenciesGalactosidaseGenerationsGoalsHealthHeatingLabelLaboratoriesLifeMagnetismMeasurableMeasuresMetalsMethodsModelingMolecularMuramidaseNaturePathway interactionsPharmaceutical PreparationsPharmacologic SubstancePhosphoglycerate KinasePhosphorylationPhysical ChemistryProcessPropertyProteinsRadialRadiationRegulationResolutionRunningSiteStructureSurfaceTemperatureTestingTextbooksTheoretical modelThermolysinThermus thermophilusWorkbasecancer therapydensityelectric fieldenzyme activityenzyme modelinsightirradiationmagnetic fieldnanonanomaterialsnanoparticlenanoscalenoveloxidationparticlephysical propertyprotein complexradiofrequencyresponsesmall moleculestandard measurethermophilic organism
项目摘要
DESCRIPTION (provided by applicant): Regulation of enzymes by naturally occurring mechanisms such as phosphorylation is fundamental to life. Small molecule control of enzymes underlies the action of many pharmaceutical drugs. Bulk thermal control of enzymatic activity enables many laboratory and industrial processes such as PCR and aspartame synthesis. Our overall goal is to establish an entirely new method for regulating enzymes. This method uses the nano- localized heat generated by metal nanoclusters such as Au102(SR)44 under radiofrequency irradiation to thermally influence the activity of a nanocluster/enzyme conjugate. The RF is chosen to interact minimally with other components of the mixture, analogous to the RF used for Wi-Fi. Thus, this nano-local thermal enzyme control does not modify the solution temperature, nor should it influence the activity of enzymes that are not directly conjugated to nanoclusters. We propose to accomplish this goal in a set of 4 specific aims. Aim 1 tests the hypothesis that we can 'activate' thermophilic enzyme/nanocluster conjugates such as thermolysin/Au102(SR)44 at assay temperatures in which the enzyme has minimal measurable activity. Aim 2 tests the hypothesis that we can reversibly 'deactivate' enzymes, presumably by reversible unfolding. For this hypothesis we begin by testing nanocluster conjugates to textbook enzymes such as lysozyme, RNAse A and B-galactosidase. In both Aims 1 and 2 we test the sub-hypothesis that the site of nanocluster conjugation on the enzyme influences the activity of the conjugate. A full implementation of this remote-control enzymology requires quantitative understanding of how nanoclusters heat in radiofrequencies. Such an understanding will allow accurate prediction of nanocluster temperature, which is prerequisite for understanding how locally hot an enzyme is. Currently, there are three proposed mechanisms for nanocluster heating. These are an inductive mechanism, a magnetic mechanism, and an electrophoretic mechanism. All mechanisms have different responses to the frequency of the applied radiofrequency filed. Aim 3 is to measure the frequency response of a small number of well-defined nanoclusters and nanoparticles. Aim 4 is to synthetically change the properties of nanoparticles in a manner that will change their thermal dissipation under different mechanisms. Both aims 3 and 4 incorporate theoretical modeling using existing mechanisms, recognizing the possible need for combining mechanisms or developing a novel theoretical mechanism for understanding thermal dissipation. Such mechanistic understanding will not only enable a new field of remote enzyme control but may also enable other nanoparticle based hyperthermal methods such as noninvasive hyperthermal cancer therapy and a remote control molecular biophysics.
描述(由申请人提供):通过天然存在的机制(例如磷酸化)对酶的调节是生命的基础。酶的小分子控制是许多药物作用的基础。酶活性的整体热控制可实现许多实验室和工业过程,例如 PCR 和阿斯巴甜合成。我们的总体目标是建立一种全新的酶调节方法。该方法利用金属纳米团簇(例如Au102(SR)44)在射频辐射下产生的纳米局部热量来热影响纳米团簇/酶缀合物的活性。选择 RF 时应尽量减少与混合物中其他成分的相互作用,类似于用于 Wi-Fi 的 RF。因此,这种纳米局部热酶控制不会改变溶液温度,也不应影响未直接缀合至纳米簇的酶的活性。我们建议通过 4 个具体目标来实现这一目标。目标 1 测试了我们可以在酶具有最小可测量活性的测定温度下“激活”嗜热酶/纳米簇缀合物(例如嗜热菌蛋白酶/Au102(SR)44)的假设。目标 2 检验了我们可以通过可逆解折叠来可逆地“失活”酶的假设。对于这一假设,我们首先测试纳米簇与溶菌酶、RNAse A 和 B-半乳糖苷酶等教科书酶的缀合物。在目标 1 和 2 中,我们测试了酶上纳米簇缀合位点影响缀合物活性的子假设。这种远程控制酶学的全面实施需要定量了解纳米团簇如何在射频下加热。这种理解将允许准确预测纳米簇温度,这是了解酶局部热度的先决条件。目前,提出了三种纳米团簇加热机制。它们是感应机制、磁机制和电泳机制。所有机制对所应用的射频场的频率都有不同的响应。目标 3 是测量少量明确的纳米团簇和纳米颗粒的频率响应。目标 4 是综合改变纳米粒子的特性,从而改变纳米粒子在不同机制下的热耗散。目标 3 和 4 都结合了使用现有机制的理论建模,认识到可能需要组合机制或开发一种新的理论机制来理解热耗散。这种机制的理解不仅将实现远程酶控制的新领域,而且还可能实现其他基于纳米颗粒的高温方法,例如非侵入性高温癌症治疗和远程控制分子生物物理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Jeffries Ackerson其他文献
Christopher Jeffries Ackerson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Jeffries Ackerson', 18)}}的其他基金
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 27.8万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 27.8万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 27.8万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 27.8万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 27.8万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 27.8万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 27.8万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 27.8万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 27.8万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 27.8万 - 项目类别:
Research Grant