Tackling Malaria Resistance with an Integrated Modeling/Experimental Approach

通过综合建模/实验方法应对疟疾耐药性

基本信息

  • 批准号:
    9111465
  • 负责人:
  • 金额:
    $ 23.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Malaria is responsible for almost a million deaths per year across the world. Plasmodium falciparum, the causative agent of the most deadly form of this disease, can readily develop resistance when treated with antimalarial drugs. Laboratory-reared resistant lines allow us to study how these parasites survive during drug challenge and help to inform more successful treatment strategies. Both clinical and laboratory investigations reveal that resistant parasites have specific changes in their genome that lead to excess amounts of the target protein (through genomic amplification) or the physical prevention of drug binding (through mutations). Because metabolism within an organism is highly interconnected with all cellular processes, pathways that interact with the mutated target must also make adjustments to support the parasite's continued ability to thrive. Some of these metabolic shifts may be minor and go unnoticed while others could confer unexpected benefits such as cross-resistance to additional drugs. This proposal describes a multifaceted approach to uncover and then impede these metabolic shifts that "enhance" parasite survival. Using an existing experimental system in which cross-resistance between two clinically-relevant antimalarials was observed, we will: 1) employ metabolomics data to construct a biologically accurate metabolic network reconstruction of the parasite before and after the generation of resistance in order identify metabolic dependencies of the resistant state and 2) computationally and empirically interrogate these critical pathways to determine if their abrogation can prevent P. falciparum resistance. Given that this work involves the disease-causing organism, which is refractory to experimental manipulation, computational models help to focus hypotheses and experimental design and mitigate risk. Additionally, since we are working with a validated experimental system and the approach takes advantage of expertise of the co-PIs involved in this proposal, we are well-positioned to rapidly build a pipeline of effective computational and experimental approaches. Once this is achieved, investigations can expand to uncover metabolic modulators of other clinically-relevant antimalarials. The ultimate goal will be to compile results from varios experimental systems and identify pathways that are required for parasite survival under stress. Targeting the general stress response would limit the development of resistance and have wide- reaching implications. A promising "resistance blocker" could be administered alongside relevant antimalarial drugs to prolong their effects and decrease worldwide malaria deaths.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Lynn Guler其他文献

Jennifer Lynn Guler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Lynn Guler', 18)}}的其他基金

The evolution of copy number variations in the AT-rich Plasmodium genome
富含 AT 的疟原虫基因组中拷贝数变异的进化
  • 批准号:
    10608156
  • 财政年份:
    2021
  • 资助金额:
    $ 23.2万
  • 项目类别:
The evolution of copy number variations in the AT-rich Plasmodium genome
富含 AT 的疟原虫基因组中拷贝数变异的进化
  • 批准号:
    10379458
  • 财政年份:
    2021
  • 资助金额:
    $ 23.2万
  • 项目类别:

相似海外基金

Developing inhibitors of Plasmodium Acetyl CoA Synthetase as new multistage antimalarials
开发疟原虫乙酰辅酶A合成酶抑制剂作为新型多级抗疟药
  • 批准号:
    MR/X030202/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.2万
  • 项目类别:
    Research Grant
Novel Dual-Stage Antimalarials: Machine learning prediction, validation and evolution
新型双阶段抗疟药:机器学习预测、验证和进化
  • 批准号:
    10742205
  • 财政年份:
    2023
  • 资助金额:
    $ 23.2万
  • 项目类别:
Natural Product Inspired Novel Antimalarials with Radical Cure Potential
受天然产物启发的具有根治潜力的新型抗疟药
  • 批准号:
    10635649
  • 财政年份:
    2023
  • 资助金额:
    $ 23.2万
  • 项目类别:
Novel Synergistic Antimalarials with Resistance Reversal Function
具有耐药逆转功能的新型协同抗疟药
  • 批准号:
    10534667
  • 财政年份:
    2022
  • 资助金额:
    $ 23.2万
  • 项目类别:
Plasmodium Protein Kinase Focused Antimalarials Discovery
疟原虫蛋白激酶聚焦抗疟药的发现
  • 批准号:
    10533634
  • 财政年份:
    2022
  • 资助金额:
    $ 23.2万
  • 项目类别:
Development of new lead antimalarials targeting parasite coenzyme A biosynthesis and utilisation.
开发针对寄生虫辅酶 A 生物合成和利用的新型先导抗疟药。
  • 批准号:
    468862
  • 财政年份:
    2022
  • 资助金额:
    $ 23.2万
  • 项目类别:
    Operating Grants
DMPK Optimisation of B-hydroxyethylamine Antimalarials
B-羟乙胺抗疟药的 DMPK 优化
  • 批准号:
    2749037
  • 财政年份:
    2022
  • 资助金额:
    $ 23.2万
  • 项目类别:
    Studentship
Repurposing antimalarials for the treatment of NTM infections
重新利用抗疟药治疗 NTM 感染
  • 批准号:
    10646331
  • 财政年份:
    2022
  • 资助金额:
    $ 23.2万
  • 项目类别:
Novel Synergistic Antimalarials with Resistance Reversal Function
具有耐药逆转功能的新型协同抗疟药
  • 批准号:
    10368441
  • 财政年份:
    2022
  • 资助金额:
    $ 23.2万
  • 项目类别:
Plasmodium Protein Kinase Focused Antimalarials Discovery
疟原虫蛋白激酶聚焦抗疟药的发现
  • 批准号:
    10663334
  • 财政年份:
    2022
  • 资助金额:
    $ 23.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了