Imaging Hepatic Gluconeogenesis with Hyperpolarized Dihydroxyacetone

使用超极化二羟基丙酮对肝脏糖异生进行成像

基本信息

  • 批准号:
    9175339
  • 负责人:
  • 金额:
    $ 35.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-30 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary Carbon-13 based dynamic nuclear polarization (DNP) experiments have shown tremendous potential for measuring glycolytic flux and pyruvate oxidation in living tissues and in vivo. However, the current stable of imaging agents cannot measure hepatic gluconeogenesis (GNG). We propose to develop [2- 13C]dihydroxyacetone (DHA) as an agent for measuring both GNG and hepatic glycolysis simultaneously. A ratio of three-carbon to hexose metabolites derived from DHA will provide a metric of net hepatic GNG. HP experiments will be compared to gold standard [U-13C]propionate/D2O based estimates of GNG and to targeted metabolomic profiles of glycolytic intermediates. We will measure GNG and glycolysis in three different rodent models. Aims 1 and 2 will target metabolism in the perfused liver of the C57BLKS/J mouse (control) and the well-accepted db/db model of diabetes and hepatic glucose overproduction. We will also assess the sensitivity of the method to treatment using a protocol based on metformin administration. Aim 3 of the grant transitions to in vivo experiments at 7 T that will be developed at the MD Anderson Center in collaboration with Dr. James Bankson. Dr. Bankson proposes to develop new constrained reconstruction algorithms that will enhance the localization of the 13C images, an extremely challenging issue for all hyperpolarized carbon-13 based imaging methods. We will use the Zucker (fa/fa) rat as a model of Type II diabetes. Subsequent experiments will be transferred back to UF for completion using the 11 T imaging system available through the National High Magnetic Field Lab at the McKnight Brain Institute. Relevance Diabetes is a worldwide epidemic that is projected to affect 300 million people worldwide by the year 2025. Methods for studying hepatic GNG are all based on tracer methodologies that require admittance to a general research center and administration of large amounts of isotopically labeled substrates. The method proposed here could be developed into a single exam that is integrated with standard magnetic resonance imaging protocols. We anticipate that the method proposed could be used to guide treatment plans for diabetes and determine the effectiveness of pharmacological interventions. Also, as a research target, the new method allows simultaneous measures of glycolysis and GNG. This observation is a fundamentally new insight into hepatic metabolism, and draws into light the nature of net hepatic GNG; it is the sum of the glycolytic and gluconeogenic activities within the tissue.
项目摘要 基于碳-13的动态核极化(DNP)实验已经显示出巨大的潜力, 测量活组织和体内的糖酵解通量和丙酮酸氧化。然而,目前稳定的 成像剂不能测量肝再生(GNG)。我们建议开发[2- 13 C]二羟基丙酮(DHA)作为同时测量GNG和肝糖酵解的试剂。一 来自DHA的三碳与己糖代谢物的比率将提供净肝GNG的量度。HP 实验将与金标准[U-13 C]丙酸盐/D2 O的GNG估计值进行比较, 糖酵解中间体的代谢组学特征。 我们将在三种不同的啮齿动物模型中测量GNG和糖酵解。目标1和2将针对代谢 在C57 BLKS/J小鼠(对照)和公认的db/db糖尿病模型的灌注肝脏中, 肝葡萄糖过度生成。我们还将评估该方法的敏感性治疗使用的协议 基于二甲双胍给药。 补助金的目标3过渡到将在MD安德森开发的7 T体内实验 中心与詹姆斯·班克森博士合作。Bankson博士建议开发新的约束 重建算法,将提高定位的13 C图像,一个极具挑战性的问题 所有基于超极化碳13的成像方法。我们将使用Zucker(fa/fa)大鼠作为类型 II型糖尿病。后续实验将转回UF,使用11 T成像完成 该系统可通过麦克奈特脑研究所的国家高磁场实验室获得。 相关性 糖尿病是一种世界性流行病,预计到2025年将影响全球3亿人。 用于研究肝GNG的方法都是基于示踪剂方法学,其需要进入一般的 研究中心和大量同位素标记底物的管理。提出的方法 这里可以发展成与标准磁共振成像集成的单一检查 协议.我们预计,所提出的方法可用于指导糖尿病的治疗计划, 确定药物干预的有效性。此外,作为研究对象,新方法 允许同时测量糖酵解和GNG。这一观察是一个全新的见解, 肝代谢,并提请光净肝GNG的性质;它是糖酵解和 组织内的致炎活性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATTHEW E MERRITT其他文献

MATTHEW E MERRITT的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATTHEW E MERRITT', 18)}}的其他基金

Imaging Hepatic Energy Metabolism in NAFLD/NASH
NAFLD/NASH 中肝脏能量代谢的成像
  • 批准号:
    10590690
  • 财政年份:
    2022
  • 资助金额:
    $ 35.4万
  • 项目类别:
Imaging Hepatic Gluconeogenesis with Hyperpolarized Dihydroxyacetone
使用超极化二羟基丙酮对肝脏糖异生进行成像
  • 批准号:
    9750686
  • 财政年份:
    2016
  • 资助金额:
    $ 35.4万
  • 项目类别:
Imaging Hepatic Gluconeogenesis with Hyperpolarized Dihydroxyacetone
使用超极化二羟基丙酮对肝脏糖异生进行成像
  • 批准号:
    9975179
  • 财政年份:
    2016
  • 资助金额:
    $ 35.4万
  • 项目类别:
Imaging Hepatic Gluconeogenesis with Hyperpolarized Dihydroxyacetone
使用超极化二羟基丙酮对肝脏糖异生进行成像
  • 批准号:
    9520104
  • 财政年份:
    2016
  • 资助金额:
    $ 35.4万
  • 项目类别:
Hyperpolarized 13C imaging for studying beta-oxidative and anaplerotic pathways
用于研究 β-氧化和回补途径的超极化 13C 成像
  • 批准号:
    8702686
  • 财政年份:
    2014
  • 资助金额:
    $ 35.4万
  • 项目类别:
IMAGING METABOLIC FLUX WITH HYPERPOLARIZED NUCLEI
使用超极化核对代谢流进行成像
  • 批准号:
    8363885
  • 财政年份:
    2011
  • 资助金额:
    $ 35.4万
  • 项目类别:
TRAINING & CONSULTATION
训练
  • 批准号:
    8363903
  • 财政年份:
    2011
  • 资助金额:
    $ 35.4万
  • 项目类别:
CONSTRUCTION OF A FLEXIBLE HYPERPOLARIZATION SYSTEM
柔性超极化系统的构建
  • 批准号:
    8363905
  • 财政年份:
    2011
  • 资助金额:
    $ 35.4万
  • 项目类别:
TRAINING & CONSULTATION
训练
  • 批准号:
    8171652
  • 财政年份:
    2010
  • 资助金额:
    $ 35.4万
  • 项目类别:
CONSTRUCTION OF A FLEXIBLE HYPERPOLARIZATION SYSTEM
柔性超极化系统的构建
  • 批准号:
    8171655
  • 财政年份:
    2010
  • 资助金额:
    $ 35.4万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了