Spatial Dynamics of Tissue and Organ Size Control
组织和器官大小控制的空间动力学
基本信息
- 批准号:9150331
- 负责人:
- 金额:$ 41.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAffectAnimal ExperimentationBackBilateralBiologicalBiologyCell CountCell CycleCell Cycle KineticsCell LineageCell SizeCellsCerebral cortexCerebrumCharacteristicsClinicalCongenital AbnormalityCuesDataDevelopmentDimensionsEngineeringEtiologyFeedbackGenesGenetically Engineered MouseGoalsGrowthHumanIndividualInfectionInjuryLabelLearningLengthLimb structureLong-Term EffectsMalnutritionMathematicsMeasurementMeasuresMechanicsMethodsMicrocephalyModelingMolecularMusMuscleNeocortexNervous system structureNeural RetinaOlfactory EpitheliumOrganOrgan SizePatternPerformancePlayProbabilityProcessRegulationResistanceRestRetinaRoleSignal TransductionSpecific qualifier valueSpeedStagingStem cellsStructureSystemTestingTissue EngineeringTissuesTransgenic MiceVariantWorkbasecell killingcell typedesignfascinatefeedinghuman tissuein vivoinsightmathematical modelmeetingsmetermodels and simulationorgan growthpublic health relevancerelating to nervous systemresearch studyspatiotemporalstemsuicide genetheories
项目摘要
DESCRIPTION: The sizes of tissues and organs are specified with great precision, a fact we notice in the symmetry of bilateral structures (such as limbs), and the degree to which genetically identical individuals resemble each other. Not only do tissues and organs reach specific sizes, they do so in the face of cell killing or alterations to cell cycle kinetics, which
suggests a feedback control mechanism. Work from our group on continually- renewing tissues has identified a general "integral negative feedback" strategy, whereby negative regulation of stem or progenitor cell renewal automatically achieves robust set-point control. Such feedback may be conveyed by diffusible growth factors-as we and others showed in the olfactory epithelium (OE), retina, and muscle-but a variety of molecules and mechanisms could act similarly. Regardless of mechanism, however, the ability of local feedback to control proliferation
is subject to distance limitations: molecular and mechanical signals decay over characteristic length scales. The fact that such scales are often very short-on the order of 100 µm or less-raises questions about how local feedback could possibly control the sizes of tissues and organs that are three or four orders of magnitude larger. Here we address this issue through a combination of mathematical modeling and animal experimentation. Preliminary modeling has identified several strategies that could, in principle, enable large sizes to be controlled through
short-range feedback. These strategies exploit the fact that controlling developmental tissue and organ growth is not a "steady-state" problem, but one of controlling a self-terminating trajectory.
By considering a variety of possible cell lineage relationships and types of feedback interactions-all of which are motivated by observations in actual developing systems-we will use modeling and simulation to systematically discover the design principles out of which strategies for feedback control of large tissues and organs may be constructed. Subsequently, we will computationally test the hypothesis that the best way to distinguish experimentally among different potential growth-control strategies is by transiently ablating defined proportions of cells at specific lineage stages, and observing the consequences for final tissue size. Finally,
we will perform just such transient cell ablations to investigate the development of three neural structures-the olfactory epithelium, the neural retina, and the cerebral neocortex-in mice, with the goal of identifying the strategies these tissues use for size control in different dimensions. This work will provide both basic insights into fundamental processes of development, and specific insights into size control in the nervous system. The results will be of direct relevance o the etiology of microcephaly and other birth defects, as well as to clinical phenomena of stunting, catch-up growth, and growth-asymmetry.
产品说明: 组织和器官的大小是非常精确的,我们注意到双侧结构(如四肢)的对称性,以及遗传相同的个体彼此相似的程度。组织和器官不仅达到特定的大小,而且在细胞死亡或细胞周期动力学改变的情况下也是如此,
提出了反馈控制机制。我们小组关于持续更新组织的工作已经确定了一种通用的“积分负反馈”策略,由此干细胞或祖细胞更新的负调节自动实现鲁棒的设定点控制。这种反馈可能是通过扩散性生长因子传递的,正如我们和其他人在嗅上皮(OE)、视网膜和肌肉中所展示的那样,但是各种分子和机制也可以起类似的作用。然而,不管机制如何,局部反馈控制增殖的能力
受到距离限制:分子和机械信号在特征长度尺度上衰减。这样的尺度通常很短(大约100微米或更小),这一事实引发了一个问题:局部反馈如何可能控制比其大三四个数量级的组织和器官的尺寸。 在这里,我们通过数学建模和动物实验相结合来解决这个问题。初步建模已经确定了几种策略,原则上可以通过以下方式控制大尺寸
短程反馈这些策略利用了这样一个事实,即控制发育组织和器官的生长不是一个“稳态”问题,而是一个控制自我终止轨迹的问题。
通过考虑各种可能的细胞谱系关系和反馈相互作用的类型-所有这些都是由实际开发系统中的观察所激发的-我们将使用建模和模拟来系统地发现设计原则,其中可以构建大型组织和器官的反馈控制策略。随后,我们将计算测试的假设,实验区分不同的潜在的生长控制策略的最佳方法是通过瞬时消融特定谱系阶段的细胞的定义比例,并观察最终组织大小的后果。最后,
我们将进行这样的瞬时细胞消融来研究小鼠中三种神经结构-嗅上皮、神经视网膜和大脑新皮质的发育,目的是确定这些组织用于不同尺寸的大小控制的策略。这项工作将提供对发育基本过程的基本见解,以及对神经系统大小控制的具体见解。研究结果将直接关系到小头畸形和其他出生缺陷的病因,以及发育迟缓、追赶性生长和生长不对称的临床现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANNE LEIGHTON CALOF其他文献
ANNE LEIGHTON CALOF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANNE LEIGHTON CALOF', 18)}}的其他基金
Spatial Dynamics of Tissue and Organ Size Control
组织和器官大小控制的空间动力学
- 批准号:
9038609 - 财政年份:2015
- 资助金额:
$ 41.91万 - 项目类别:
Spatial Dynamics of Tissue and Organ Size Control
组织和器官大小控制的空间动力学
- 批准号:
9309099 - 财政年份:2015
- 资助金额:
$ 41.91万 - 项目类别:
Identify the strategies that tissues use to control growth
确定组织用于控制生长的策略
- 批准号:
8516154 - 财政年份:2007
- 资助金额:
$ 41.91万 - 项目类别:
NIPBL, Cohesin and Related Structural Birth Defects
NIPBL、粘连蛋白和相关结构性出生缺陷
- 批准号:
8079355 - 财政年份:2006
- 资助金额:
$ 41.91万 - 项目类别:
NIPBL, Cohesin and Related Structural Birth Defects
NIPBL、粘连蛋白和相关结构性出生缺陷
- 批准号:
8264763 - 财政年份:2006
- 资助金额:
$ 41.91万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 41.91万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 41.91万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 41.91万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 41.91万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 41.91万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 41.91万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 41.91万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 41.91万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 41.91万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 41.91万 - 项目类别:
Research Grant














{{item.name}}会员




