Polygenicity, Pleiotrophy and Power: Novel Statistical Methods for Gene Discovery
多基因性、多效性和功效:基因发现的新统计方法
基本信息
- 批准号:9068954
- 负责人:
- 金额:$ 40.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-05 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressArchitectureBioconductorBlood PressureCholesterolChromosome MappingComplexComputer softwareCrohn&aposs diseaseDataData AnalysesData SetDatabasesDevelopmentDiastolic blood pressureDiseaseEuropeanGenesGeneticGenomeGenotypeGoalsHealthHeritabilityHigh Density LipoproteinsHumanIndividualInflammatory Bowel DiseasesInvestigationMethodologyMethodsModelingMolecularOutcome StudyOutputPathway AnalysisPathway interactionsPerformancePhenotypePublic HealthPublishingRiskRisk FactorsSamplingStatistical MethodsTestingTriglyceridesUlcerative ColitisWeightbaseblood lipidcardiovascular disorder riskdeep sequencinggene discoverygenetic associationgenome wide association studyimprovedinnovationmethod developmentnext generation sequencingnovelpleiotropismpredictive modelingprogramssimulationstatisticstooltraituser-friendlyweb site
项目摘要
DESCRIPTION (provided by applicant): As recently stated, "GWAS have so far identified only a small fraction of the heritability of common diseases, so the ability to make meaningful predictions is still quite limited" (Collins, 2010). This "missing heritability" has been attribute to a number of potential causes, and it has become clear that most complex traits are influenced by many genes, each with effects too small to be reliably discovered using traditional analyses of GWAS data. We propose to develop several innovative approaches to enhance gene discovery and improve replication rates and generalization performance of predictive models. These methods will vastly increase the power to detect true (non-null) effects in data derived from current GWAS. While we emphasize applications to currently existing GWAS data for Inflammatory Bowel Disease and Cardiovascular Disease Risk Factors, the same methodological framework will be applicable to next generation sequencing data. The Specific Aims of the proposal are: Aim 1: To Develop Statistical Methods Incorporating Functional Annotations that Improve Discovery Rates. We will develop and implement methods that extend current state-of-the-field analyses for GWAS of univariate phenotypes, using the LD-weighted SNP annotation methodology recently developed by our group. Specifically, we propose to extend the mixture model approach to account for SNP LD-weighted functional annotations. Aim 2: To Develop Statistical Methods Incorporating Pleiotropic Relationships that Improve Discovery Rates. We will generalize the mixture model approach to encompass covariance between z-scores of SNPs from two phenotypes simultaneously (i.e., pleiotropy) and to use the uncovered pleipotropic relationships to improve power for SNP discovery and replication. Aim 3: To Use Estimates from Empirical Bayes Models as Priors in Functional Characterization and Pathway Analyses. We will use posterior effect size estimates from pleiotropic Empirical Bayes analyses as inputs to explicate shared and unique genetic mechanisms of phenotypes, as well as molecular pathways. Aim 4: To Develop and Distribute Software. Computer software, implementing the methods developed in Aims 1-3, will be distributed as a freely available and user-friendly R package hosted on Bioconductor.org and as a suite of interactive GUI-based programs available on a website hosted by our lab.
描述(由申请人提供):正如最近所说的,“到目前为止,Gwas只确定了常见疾病遗传性的一小部分,因此做出有意义的预测的能力仍然相当有限”(Collins,2010)。这种“遗传性缺失”被归因于许多潜在的原因,而且很明显,大多数复杂的性状都受到许多基因的影响,每个基因的影响都太小,无法用传统的GWAS数据分析来可靠地发现。我们建议开发几种创新的方法来增强基因发现,并提高预测模型的复制率和泛化性能。这些方法将极大地提高从当前GWA得出的数据中检测真实(非空)效应的能力。虽然我们强调应用于目前已有的用于炎症性肠病和心血管疾病风险因素的GWAS数据,但同样的方法学框架将适用于下一代测序数据。该提案的具体目标是:目标1:制定纳入功能注释的统计方法,以提高发现率。我们将开发和实施方法,利用我们小组最近开发的LD加权SNP注释方法,扩展当前对单变量表型GWA场状态的分析。具体地说,我们建议扩展混合模型方法来解释SNP LD加权的函数注释。目标2:开发纳入多因素关系的统计方法,以提高发现率。我们将推广混合模型方法,以同时包含来自两个表型的SNP的z分数之间的协方差(即多效性),并使用未覆盖的多效性关系来提高SNP发现和复制的能力。目的3:使用经验贝叶斯模型的估计值作为功能表征和通路分析的先验。我们将使用多效性经验贝叶斯分析的后验效应大小估计作为输入,以解释表型的共同和独特的遗传机制,以及分子途径。目标4:开发和分发软件。实施AIMS 1-3中开发的方法的计算机软件将作为免费提供和用户友好的R包分发,托管在BioConductor.org上,并作为一套交互的基于图形用户界面的程序在我们实验室托管的网站上提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wesley Kurt Thompson其他文献
Wesley Kurt Thompson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wesley Kurt Thompson', 18)}}的其他基金
NeuroMAP Phase II - Data Management and Statistics Core
NeuroMAP 第二阶段 - 数据管理和统计核心
- 批准号:
10711138 - 财政年份:2023
- 资助金额:
$ 40.44万 - 项目类别:
Polygenicity, Pleiotrophy and Power: Novel Statistical Methods for Gene Discovery
多基因性、多效性和功效:基因发现的新统计方法
- 批准号:
9283586 - 财政年份:2014
- 资助金额:
$ 40.44万 - 项目类别:
Polygenicity, Pleiotrophy and Power: Novel Statistical Methods for Gene Discovery
多基因性、多效性和功效:基因发现的新统计方法
- 批准号:
8858642 - 财政年份:2014
- 资助金额:
$ 40.44万 - 项目类别:
Polygenicity, Pleiotrophy and Power: Novel Statistical Methods for Gene Discovery
多基因性、多效性和功效:基因发现的新统计方法
- 批准号:
8625096 - 财政年份:2014
- 资助金额:
$ 40.44万 - 项目类别:
Modeling Covariation Brain Function, Health/Depression
协变大脑功能建模,健康/抑郁
- 批准号:
7079853 - 财政年份:2006
- 资助金额:
$ 40.44万 - 项目类别:
Modeling Dynamic Covariation of Brain Function, Health and Symptoms in Depression
抑郁症中大脑功能、健康和症状的动态协变建模
- 批准号:
7209813 - 财政年份:2006
- 资助金额:
$ 40.44万 - 项目类别:
Modeling Dynamic Covariation of Brain Function, Health and Symptoms in Depression
抑郁症中大脑功能、健康和症状的动态协变建模
- 批准号:
7373576 - 财政年份:2006
- 资助金额:
$ 40.44万 - 项目类别:
Modeling Dynamic Covariation of Brain Function, Health and Symptoms in Depression
抑郁症中大脑功能、健康和症状的动态协变建模
- 批准号:
7585777 - 财政年份:2006
- 资助金额:
$ 40.44万 - 项目类别:
Modeling Dynamic Covariation of Brain Function, Health and Symptoms in Depression
抑郁症中大脑功能、健康和症状的动态协变建模
- 批准号:
7693998 - 财政年份:2006
- 资助金额:
$ 40.44万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 40.44万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 40.44万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 40.44万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 40.44万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 40.44万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 40.44万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 40.44万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 40.44万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 40.44万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 40.44万 - 项目类别:
Research Grant