Engineered gene circuits for basic science and biotechnology
用于基础科学和生物技术的工程基因电路
基本信息
- 批准号:9177553
- 负责人:
- 金额:$ 60.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAnimal ExperimentsAnimal ModelAnimalsAntibioticsBackBacteriaBacterial LuciferasesBasic ScienceBiotechnologyCell LineCellsCessation of lifeCharacteristicsCloningColorectal CancerComputer SimulationCustomCytolysisDNADevicesDiseaseEcologyEffectivenessEngineered GeneEngineeringEnvironmentEnzymesEvolutionGenesGeneticGenomeGenomicsGoalsGrowthHealthHumanHuman ResourcesHuman bodyImmunocompetentIn VitroKnowledgeLeadLeftLibrariesLifeMeasuresMicrobeModelingMolecular BiologyMolecular Biology TechniquesMonitorMusMutationOpticsPlasmidsPopulationPopulation DensityPopulation DynamicsPopulation GrowthPostdoctoral FellowPrevalenceProductionSafetySignal TransductionSiteSolid NeoplasmSystemTechnologyTestingTherapeuticTrainingWeightWorkbasecostdensitydesigndesign and constructiongraduate studentimaging systemin vivointercellular communicationkillingsmathematical modelmicrobiotamodel developmentmouse modelnovel therapeuticspathogenpressurequorum sensingresponsesafety engineeringsafety testingstability testingsubcutaneoussuccesssynthetic biologytechnology developmenttime usetooltumor
项目摘要
Project Summary
We will continue to design, construct and characterize genetic circuits. We will use micro uidic tools
to grow and observe single cells and colonies in precisely controlled environmental conditions, and we will
test a subset of the engineered bacterial strains as therapies in animal models. Single cell and colony
dynamics will inform mathematical models that will be used to identify key design characteristics, which
will then be rigorously tested using previously established molecular biology techniques. Eight graduate
students and postdocs will work on multiple aspects of the project, while maintaining a particular focus on
modeling or technology development for monitoring bacteria or in vivo characterization. Our track record
demonstrates our ability to train personnel in a multi-disciplinary approach that has led to new tools for
Synthetic Biology, along with an increased understanding of gene and signaling networks generally.
Our recent characterization of bacterial circuits in animal models has served to highlight the need
for bene cial strains that are stable and safe over therapeutically relevant timescales. Accordingly, our
Speci c Aims focus on stability (Aim 1), delivery (Aim 2), safety (Aim 3), and in vivo testing (Aim 4).
Gene circuits inevitably generate mutations that are selected to decrease the additional burden created
by the inserted genetic machinery. Our rst aim will develop strategies for extending the \lifetime" of
gene circuits in bacteria before selective pressure disables their desired functionality. We will develop
computational models and experimentally quantify how circuit redundancy increases circuit lifetime. We
will use our experimental platform to monitor functionality across scales from single-cell to batch culture
environments. Our second aim will primarily focus on engineering small bacterial ecologies. Here we
will use modeling to guide the design of up to three interacting strains that can deliver therapies in a
pre-determinted sequential order. In the third aim, we will build a safety circuit that triggers the death
of all bacteria at a given threshold population density. The goal is to create an irreversible intracellular
switch that rapidly and eciently kills all cells before mutations can compromise the safety strategy. In
the nal aim, we will test the circuits designed in the rst three aims in animal models. We will engineer
optical markers that enable characterization of the dynamics of bacterial colonies and tumor size in vivo.
Importantly, the relative ease and low cost of bacterial cloning will inevitably lead to a bottleneck for the
eld of Synthetic Biology, as therapeutic strains can be created at a rate that will far exceed the ability
to test them. This highlights an acute need for quantitative models that have been thoroughly validated
using in vitro technologies. Consequently, only a fraction of the circuits built in Aims 1-3 will be deemed
worthy of in vivo testing. More generally, we anticipate that the computational models arising from these
studies will be generally applicable across a wide range of emerging applications that employ bacteria.
项目摘要
我们将继续设计,构建和表征遗传电路。我们将使用微型工具
在精确控制的环境条件下生长和观察单细胞和菌落,我们将
在动物模型中测试作为疗法的工程细菌菌株的子集。单细胞和菌落
动力学将为数学模型提供信息,这些数学模型将用于确定关键的设计特性,
然后将使用先前建立的分子生物学技术进行严格测试。八毕业生
学生和博士后将致力于项目的多个方面,同时保持特别关注
用于监测细菌或体内表征的建模或技术开发。我们的记录
展示了我们以多学科方法培训人员的能力,这种方法导致了新的工具,
合成生物学,沿着对基因和信号网络的理解。
我们最近在动物模型中对细菌回路的表征突出了
在治疗相关的时间尺度上稳定和安全的贝内菌株。因此,我们的
具体目标侧重于稳定性(目标1)、输送(目标2)、安全性(目标3)和体内试验(目标4)。
基因回路不可避免地产生突变,这些突变被选择来减少所产生的额外负担。
被插入的基因机器所控制我们的第一个目标是制定战略,
在选择性压力使其所需功能失效之前,细菌中的基因电路。我们将开发
计算模型和实验量化电路冗余如何增加电路寿命。我们
将使用我们的实验平台来监测从单细胞到批量培养的各种规模的功能
环境.我们的第二个目标将主要集中在工程小细菌生态。这里我们
将使用建模来指导多达三种相互作用的菌株的设计,这些菌株可以在一个
预定的顺序。在第三个目标中,我们将建立一个安全电路,
在给定的阈值种群密度下所有细菌的数量。目标是在细胞内创造一个不可逆的
在突变可能危及安全策略之前,快速而有效地杀死所有细胞的开关。在
最后,我们将在动物模型中测试前三个目标中设计的电路。我们将工程师
光学标记物能够表征体内细菌菌落和肿瘤大小的动态。
重要的是,细菌克隆的相对容易和低成本将不可避免地导致细菌克隆的瓶颈。
合成生物学领域,因为治疗菌株可以以远远超过合成生物学能力的速度产生。
来测试它们这凸显了对经过彻底验证的定量模型的迫切需求
使用体外技术。因此,只有一小部分目标1-3中的电路将被视为
值得在体内测试。更一般地说,我们预计,计算模型产生于这些
研究将普遍适用于使用细菌的广泛的新兴应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tal Danino其他文献
Tal Danino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tal Danino', 18)}}的其他基金
Engineering probiotics for tuberculosis therapy
用于结核病治疗的工程益生菌
- 批准号:
10511520 - 财政年份:2022
- 资助金额:
$ 60.45万 - 项目类别:
Engineering probiotics for tuberculosis therapy
用于结核病治疗的工程益生菌
- 批准号:
10629371 - 财政年份:2022
- 资助金额:
$ 60.45万 - 项目类别:
Probiotic guided CAR-T therapy (ProCARs) for breast cancer
益生菌引导的乳腺癌 CAR-T 疗法 (ProCAR)
- 批准号:
10681319 - 财政年份:2020
- 资助金额:
$ 60.45万 - 项目类别:
Probiotic guided CAR-T therapy (ProCARs) for breast cancer
益生菌引导的乳腺癌 CAR-T 疗法 (ProCAR)
- 批准号:
10034374 - 财政年份:2020
- 资助金额:
$ 60.45万 - 项目类别:
Engineering S. typhimurium for metastatic colorectal cancer
工程鼠伤寒沙门氏菌治疗转移性结直肠癌
- 批准号:
9973552 - 财政年份:2020
- 资助金额:
$ 60.45万 - 项目类别:
Engineering immunotherapeutic probiotics to mitigate irAE
工程免疫治疗益生菌以减轻 irAE
- 批准号:
10378953 - 财政年份:2020
- 资助金额:
$ 60.45万 - 项目类别:
Probiotic guided CAR-T therapy (ProCARs) for breast cancer
益生菌引导的乳腺癌 CAR-T 疗法 (ProCAR)
- 批准号:
10447144 - 财政年份:2020
- 资助金额:
$ 60.45万 - 项目类别:
Probiotic guided CAR-T therapy (ProCARs) for breast cancer
益生菌引导的乳腺癌 CAR-T 疗法 (ProCAR)
- 批准号:
10263960 - 财政年份:2020
- 资助金额:
$ 60.45万 - 项目类别:
Engineering S. typhimurium for metastatic colorectal cancer
工程鼠伤寒沙门氏菌治疗转移性结直肠癌
- 批准号:
10532672 - 财政年份:2020
- 资助金额:
$ 60.45万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 60.45万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 60.45万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 60.45万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 60.45万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 60.45万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 60.45万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 60.45万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 60.45万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 60.45万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 60.45万 - 项目类别:
Research Grant