Profiling missing data in electronic health records for diabetes care research
分析电子健康记录中缺失的数据以进行糖尿病护理研究
基本信息
- 批准号:9169147
- 负责人:
- 金额:$ 22.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdverse eventAffectAlgorithmsAmericanBayesian ModelingCaringCharacteristicsChronicClinicalClinical ResearchClinical TrialsClinical effectivenessComplexComputer softwareComputerized Medical RecordDataData QualityData SetData SourcesDatabasesDependencyDevelopmentDiabetes MellitusDocumentationElectronic Health RecordEvidence based treatmentExclusionGlycosylated HemoglobinGlycosylated hemoglobin AGuidelinesHealthHealth PersonnelIncentivesInvestigationJointsKnowledgeLaboratoriesLeadLongitudinal StudiesMeasurementMeasuresMediator of activation proteinMedical RecordsMethodologyMethodsModelingMorbidity - disease rateOutcomePathway interactionsPatient CarePatient-Centered CarePatientsPatternPharmaceutical PreparationsPhysiciansProcessPropertyQuality of CareResearchRiskRoleSourceStatistical ModelsStructureSystemTestingTimeUncertaintyVisitWorkabstractingadverse outcomebasecare seekingcomparative effectivenesseffectiveness researchevidence baseflexibilityglycemic controlhealth care deliveryhealth care qualityimprovedindexingindividual patientindividualized medicinemortalitynovelopen sourcepatient orientedtreatment planningusability
项目摘要
Abstract
Current guidelines for diabetes care recommend individualized treatment plans for complex patients since tight
control of glycosylated hemoglobin (A1c) may not be appropriate. However, little evidence exists to support the
patient-centered decisions. Electronic health records (EHRs) provide an important source for clinical evidence
on improving diabetes care, but suffer from usability deficiencies. Particularly the lab measures and vital signs
have intermittent missing values where the irregular visit patterns may be informative about the patients'
underlying medication status. Patient characteristics are also incomplete due to linkage error. We aim to
impute the missing values in EHRs and improve the data quality to strengthen the evidence base for diabetes
guidelines. The proposed work is motivated by ongoing clinical research to examine the role of patient
complexity in the relationship between tight A1c control and the risk of adverse events, using a pre-existing
EHR dataset of 8,304 patients with diabetes cared by the UW Health during 2003-2011. We propose Bayesian
latent profile models under multiple imputation to account for the potentially non-ignorable visiting process,
facilitate modeling a large number of EHR variables of mixed types and develop scalable computation
algorithms. Specifically, first we build latent profiles by jointly modeling A1c values, patient characteristics and
health outcomes. Second, we generalize the latent profiles by multiple pattern indices and combine the
trajectories of multiple lab measures and vital signs with intermittent missing values, as well as accounting for
incomplete patient sociodemographics. Third, we release open source computation software and disseminate
new clinical findings to the healthcare delivery system. The investigation results will advance statistical
methodology development for missing data in longitudinal studies, increase the compatibility of available
patient medical records and strengthen the evidence base to support existing diabetes guidelines.
摘要
目前的糖尿病护理指南建议为复杂患者制定个性化的治疗计划,
糖化血红蛋白(A1 c)的控制可能不合适。然而,几乎没有证据支持
以病人为中心的决定。电子健康记录(EHR)为临床证据提供了重要来源
改善糖尿病护理,但存在可用性不足的问题。特别是实验室测量和生命体征
具有间歇性缺失值,其中不规则的访视模式可能提供有关患者
基础用药状态。由于链接错误,患者特征也不完整。我们的目标是
填补EHR中的缺失值,提高数据质量,以加强糖尿病的证据基础
指南拟议的工作是出于正在进行的临床研究,以检查病人的作用,
严格A1 c控制与不良事件风险之间关系的复杂性,使用预先存在的
2003-2011年期间由UW Health护理的8,304名糖尿病患者的EHR数据集。我们提出贝叶斯
在多个插补下的潜在简档模型以解释潜在的不可验证的访问过程,
便于对大量混合类型的EHR变量进行建模,并开发可扩展的计算
算法具体来说,首先,我们通过联合建模A1 c值,患者特征和
健康成果。其次,我们通过多个模式指数来概括潜在的轮廓,并将联合收割机
多个实验室测量和生命体征的轨迹,具有间歇性缺失值,以及解释
不完整的患者社会人口统计学资料。第三,我们发布开源计算软件,
新的临床发现,以医疗保健提供系统。调查结果将推进统计
纵向研究中缺失数据的方法学开发,增加可用数据的兼容性
患者的医疗记录,并加强证据基础,以支持现有的糖尿病指南。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yajuan Si其他文献
Yajuan Si的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yajuan Si', 18)}}的其他基金
Statistical adjustments of sample representation in community-level estimates of COVID-19 transmission and immunity
社区层面 COVID-19 传播和免疫力估计中样本代表性的统计调整
- 批准号:
10600097 - 财政年份:2022
- 资助金额:
$ 22.31万 - 项目类别:
Novel Approaches to Adjusting for Population Heterogeneity and Representation in Neuroimaging Studies
神经影像研究中调整群体异质性和代表性的新方法
- 批准号:
10400104 - 财政年份:2021
- 资助金额:
$ 22.31万 - 项目类别:
Novel Approaches to Adjusting for Population Heterogeneity and Representation in Neuroimaging Studies
神经影像研究中调整群体异质性和代表性的新方法
- 批准号:
10189007 - 财政年份:2021
- 资助金额:
$ 22.31万 - 项目类别:
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 22.31万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 22.31万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 22.31万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 22.31万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 22.31万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 22.31万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 22.31万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 22.31万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 22.31万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 22.31万 - 项目类别:














{{item.name}}会员




