The role of neuroepigenetics in bidirectional behavioral states
神经表观遗传学在双向行为状态中的作用
基本信息
- 批准号:9167992
- 负责人:
- 金额:$ 200.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-20 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectAgingBehaviorBehavioralBloodBrainCaloriesCaringChromatinCollaborationsConsumptionDNA MethylationData SetDevelopmental ProcessDietDiseaseEndocrineEnvironmentEnzymesEpigenetic ProcessFastingFeeding behaviorsFunctional disorderGatekeepingGene ExpressionGenesGeneticHealthHeterogeneityHistone AcetylationHourHumanHungerImpaired cognitionKnowledgeLinkMachine LearningMaintenanceMalignant NeoplasmsMapsMeasuresMediatingMemoryMental DepressionMental RetardationMetabolismMethodologyMethodsModelingMolecularNerve DegenerationNeural PathwaysNeuronal PlasticityNeuronsNutrientOutputPathway interactionsPhysiologicalPhysiological AdaptationPlayProcessRoleSatiationSystemTechniquesWorkabstractingaddictionbrain behaviorcofactorcomputerized toolsconditioningfeedingflymetabolic abnormality assessmentneurochemistryneuronal excitabilitypublic health relevancerelating to nervous systemresearch studysugar
项目摘要
Abstract
In the last decade it has become increasingly apparent that epigenetic mechanisms regulating gene
expression play an important role in brain function and dysfunction. Disruption in neuroepigenetic
developmental processes such as DNA methylation and histone acetylation result in mental retardation and
cognitive impairments. More recently, neuroepigenetic processes have also been implicated in adult behaviors,
such as addiction and memory. This opens the possibility that these mechanisms may be able to control
the establishment and maintenance of behavioral states. However, the underlying mechanisms through
which neuroepigenetic processes can mediate changes in circuit excitability to determine behavioral states
remain mysterious. Moreover, because of the complexity and heterogeneity of the mammalian brain, we have
no knowledge about the genetic loci of integration between the environment and behavior, and the identity of
the neural pathways that control them in specific circuits. This presents a major roadblock towards unlocking
the interface between brain and environment and their role in human health and disease. Here we propose a
three-prong solution to this problem by using: a brain that shows conserved neurochemistry and
neuroepigenetic mechanisms, but with orders of magnitude fewer neurons and homogenous circuits compared
to mammalian brains, behaviors that are regulated by the environment (hunger and satiety), and an
environment that is experimentally controllable (fasting vs. re-feeding; normal diet vs. high sugar diet).
Changes in the excitability and plasticity of conserved circuits determine outputs feeding states like hunger
and satiety. These changes occur slow, are persistent over hours, depend on the physiological state and are
bidirectional. Thus, they could be encoded neuroepigenetically to alter the expression of key genes important
to modulate circuit excitability. Furthermore, because a large number of metabolism intermediates functions as
cofactors for chromatin modifying enzymes, physiological changes in metabolites and nutrients can directly
alter gene expression. My lab has pioneered techniques and established unique collaborations to
address the functional role of neuroepigenetic processes in regulating the activity of specific circuits
in the context of feeding states. We propose to map how environmental inputs act on chromatin and gene
expression to direct the changes in neuronal excitability that underlie output feeding behaviors. First, we will
identify the specific chromatin pathways that act in a unique circuit important to switch the behavioral state of
the fly between hungry and sated. We will then map the functional genetic loci of integration between
physiological state and output behavioral states by examining the occupancy of these pathways on chromatin
and their effect on behavior and neural activity. We will then dissect how changes in environmental input
(energy scarcity in fasting, energy availability in re-feeding, and energy surplus in a high sugar diet) directly
affect gene expression by altering the activity of these pathways and their genetic loci of integration. To this
end, we will work with analytical chemists to develop new methods to measure changes in metabolites in the
blood, brain and specific circuits and with computational biologists to harness machine learning analysis to
integrate metabolism and gene expression datasets to identify the molecular pathways that act at the interface
between input and effector mechanisms to regulate output behavioral states. Because the endocrine and
physiological changes that underlie hunger and satiety are evolutionary conserved, our approach will
provide a model of how the environment can functionally determine bidirectional, flip-flop behavioral
states through neuroepigenetic mechanisms. More broadly, these studies will uncover how epigenetic
mechanisms may function as gatekeepers of “behavioral states” (normal and abnormal), to provide the
molecular and physiological mechanisms underlying the “conditioning” effect of environments (from nutrients to
maternal care) on neural plasticity.
摘要
在过去的十年里,越来越明显的是,表观遗传机制调节基因表达,
表达在脑功能和功能障碍中起重要作用。神经表观遗传的破坏
发育过程如DNA甲基化和组蛋白乙酰化导致智力迟钝,
认知障碍最近,神经表观遗传过程也与成人行为有关,
比如上瘾和记忆。这开启了这些机制可能能够控制
行为状态的建立和维持。然而,通过
哪些神经表观遗传过程可以介导回路兴奋性的变化,以确定行为状态
保持神秘。此外,由于哺乳动物大脑的复杂性和异质性,
没有关于环境和行为之间整合的遗传位点的知识,
在特定回路中控制它们的神经通路。这是解锁的主要障碍
大脑与环境之间的界面及其在人类健康和疾病中的作用。在这里,我们提出一个
一个三管齐下的解决方案,通过使用:一个大脑,显示保守的神经化学和
神经表观遗传机制,但数量级较少的神经元和同质电路相比,
对哺乳动物的大脑,由环境调节的行为(饥饿和饱腹感),以及
实验可控的环境(禁食与再喂养;正常饮食与高糖饮食)。
保守回路的兴奋性和可塑性的变化决定了饥饿等状态的输出
和饱腹感。这些变化发生缓慢,持续数小时,取决于生理状态,
双向的因此,它们可以在神经表观遗传学上编码,以改变重要的关键基因的表达。
来调节电路的兴奋性。此外,由于大量的代谢中间体作为
染色质修饰酶的辅因子、代谢物和营养物质的生理变化可以直接
改变基因表达。我的实验室开创了技术,并建立了独特的合作,
解决神经表观遗传过程在调节特定回路活动中的功能作用
in the context背景of feeding喂养states状态.我们建议绘制环境输入如何作用于染色质和基因
表达来指导神经元兴奋性的变化,这些神经元兴奋性是输出进食行为的基础。一是
确定特定的染色质途径,这些途径在一个独特的回路中起作用,对转换细胞的行为状态很重要。
在饥饿和饱足之间徘徊。然后,我们将绘制整合的功能遗传位点,
生理状态和输出行为状态,通过检查这些途径在染色质上的占有率
以及它们对行为和神经活动的影响。然后,我们将剖析环境投入的变化
(禁食时的能量不足,再喂养时的能量可用性,高糖饮食中的能量过剩)
通过改变这些途径的活性及其遗传整合位点来影响基因表达。本
最后,我们将与分析化学家合作,开发新的方法来测量代谢物的变化,
血液,大脑和特定电路,并与计算生物学家利用机器学习分析,
整合代谢和基因表达数据集,以确定作用于界面的分子途径
在输入和效应器机制之间调节输出行为状态。因为内分泌和
饥饿和饱足感的生理变化在进化上是保守的,我们的方法将
提供了一个模型,说明环境如何在功能上决定双向、触发器行为
通过神经表观遗传机制。更广泛地说,这些研究将揭示表观遗传如何
机制可以充当“行为状态”(正常和异常)的看门人,以提供
分子和生理机制的基础“调理”的影响,环境(从营养素,
产妇护理)对神经可塑性的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Monica Dus其他文献
Monica Dus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Monica Dus', 18)}}的其他基金
Neural determinants on meal size in invertebrate models of obesity
无脊椎动物肥胖模型中膳食量的神经决定因素
- 批准号:
10518734 - 财政年份:2022
- 资助金额:
$ 200.99万 - 项目类别:
Neural and molecular mechanisms of glucosensation mediating food choice behavior
葡萄糖酸化介导食物选择行为的神经和分子机制
- 批准号:
9068114 - 财政年份:2015
- 资助金额:
$ 200.99万 - 项目类别:
Neural and molecular mechanisms of glucosensation mediating food choice behavior
葡萄糖酸化介导食物选择行为的神经和分子机制
- 批准号:
9242019 - 财政年份:2015
- 资助金额:
$ 200.99万 - 项目类别:
Mechanisms of glucosensation mediating food choice behavior in Drosophila
葡萄糖酸化介导果蝇食物选择行为的机制
- 批准号:
8423858 - 财政年份:2013
- 资助金额:
$ 200.99万 - 项目类别:
Neural and molecular mechanisms of glucosensation mediating food choice behavior
葡萄糖酸化介导食物选择行为的神经和分子机制
- 批准号:
8713989 - 财政年份:2013
- 资助金额:
$ 200.99万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 200.99万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 200.99万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 200.99万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 200.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 200.99万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 200.99万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 200.99万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 200.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 200.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 200.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




