Quantitative Parenchyma Descriptor as an Imaging Biomarker of Breast Cancer Risk
定量实质描述符作为乳腺癌风险的影像生物标志物
基本信息
- 批准号:9110921
- 负责人:
- 金额:$ 37.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAgeAreaAwarenessBiological MarkersBreastBreast Cancer DetectionBreast Cancer Early DetectionBreast Cancer PatientBreast Cancer Risk Assessment ToolBreast Cancer Risk FactorCancer PatientCase-Control StudiesCategoriesCause of DeathCharacteristicsClinicalClinical TrialsCollectionComputer Vision SystemsComputer softwareContralateralCounselingDataData SetDatabasesDescriptorDevelopmentDrug or chemical Tissue DistributionEffectivenessEpithelialEthnic OriginExhibitsFoundationsFutureGoalsHealth Care CostsHealthcareHigh Risk WomanImageImage AnalysisIndividualJointsMachine LearningMalignant NeoplasmsMammographyMeasuresMethodsModelingMonitorPatientsPatternPerformancePlayPopulationPreventivePreventive treatmentRaceRecommendationRiskRisk AssessmentRisk EstimateRisk FactorsRisk ManagementStratificationStructureTechniquesTestingTimeTissuesTrainingTreatment ProtocolsValidationVisualWomanabstractingbasebreast cancer diagnosisbreast densitycancer diagnosiscancer riskcase controlcompare effectivenesscomputerizedcostcost effectivedensitydesigndigitalfollow-upimaging biomarkerimprovedindividual patientinnovationinterestmalignant breast neoplasmpersonalized medicinepredictive modelingpublic health relevanceradiologistresearch and developmentscreeningstatisticssuccesstooltumor
项目摘要
DESCRIPTION (provided by applicant): Quantitative Parenchyma Descriptor as an Imaging Biomarker of Breast Cancer Risk Project Summary/Abstract Breast cancer remains one of the leading causes of death among women at the age of 40 and older. Mammography has been used as a low-cost screening tool for breast cancer. The recent controversy on breast cancer screening recommendations has increased public awareness and interests for informed counseling of screening and health care options based on individualized estimates of risk. The goal of this proposed project is to develop a computerized image-based biomarker to assess the breast cancer risk of individual patients in the screening population. The innovation of our approach lies in the fact that the quantitative breast parenchyma descriptor (q-BPD) will be designed to take into account not only the percentage of dense tissue (PD) but also the stromal and epithelial structural pattern of an individual's breast that is complementary to, rather than a
surrogate of, the breast density. The q-BPD is obtained by a joint analysis of the complexity of the parenchymal distribution pattern (mammographic parenchymal pattern, MPP) and the amount of dense tissue (PD) as they are imaged on full-field digital mammograms (FFDMs). We hypothesize that the proposed q-BPD is an independent risk factor for breast cancer and will have a stronger predictive power than previous approaches such as PD or BI-RADS density categories alone. To test the hypothesis, we have the following specific aims: (1) to collect a matched case-control data set of 500 breast cancer cases and 2000 matched controls with 5 years of prior FFDMs (prior to cancer diagnosis for the case group). We will split the entire data set into independent subsets for training and validation; (2) to design a q- BPD by using advanced machine learning and computer vision techniques to maximize the discriminatory power at the personal level; (3) to investigate the association of developed q-BPD with breast cancer risk in comparison with commonly used density descriptors, such as radiologist's estimates of BI-RADS density categories and interactive PD on FFDMs by case-control studies and statistical analyses, taking into account other confounding risk factors. When fully developed, the automated q-BPD can be incorporated as a part of routine breast cancer screening. It will not only be useful for breast cancer risk prediction for individual patients but
also for monitoring of risk regression or progression over time due to treatment or other factors. The new risk prediction tool is expected to play a key role in personalized breast cancer screening for women at different risk levels, thereby reducing health care costs while benefiting high risk women. The success of this project will lay the foundation for future large-scale clinica trials to address the limitations and investigate the clinical utilities of the proposed q-BPD for breast cancer risk prediction. Key Words: quantitative breast parenchyma analysis, image-based biomarker, breast cancer risk prediction, full-field digital mammogram (FFDM)
描述(由申请人提供):定量实质描述符作为乳腺癌风险项目的成像生物标志物摘要/摘要乳腺癌仍然是40岁及以上妇女死亡的主要原因之一。乳房X线摄影已被用作乳腺癌的低成本筛查工具。最近关于乳腺癌筛查建议的争议提高了公众对基于个性化风险估计的筛查和医疗保健选择的知情咨询的认识和兴趣。该项目的目标是开发一种计算机化的基于图像的生物标志物,以评估筛查人群中个体患者的乳腺癌风险。我们的方法的创新在于,定量乳腺实质描述符(q-BPD)将被设计为不仅考虑致密组织(PD)的百分比,而且考虑个体乳腺的基质和上皮结构模式,其是对乳腺实质的补充,而不是对乳腺实质的补充。
乳房密度的替代物。q-BPD是通过联合分析实质分布模式(乳腺X线实质模式,MPP)的复杂性和致密组织(PD)的数量获得的,因为它们在全视野数字乳腺X线照片(FFDM)上成像。我们假设提出的q-BPD是乳腺癌的独立危险因素,并且比以前的方法(如单独的PD或BI-RADS密度分类)具有更强的预测能力。为了验证这一假设,我们有以下具体目标:(1)收集500例乳腺癌病例和2000例匹配对照的病例对照数据集,这些病例对照数据集具有5年的既往FFDM(病例组在癌症诊断之前)。我们将整个数据集分成独立的子集进行训练和验证;(2)通过使用先进的机器学习和计算机视觉技术来设计q-BPD,以最大限度地提高个人层面的区分能力;(3)与常用的密度描述符相比,研究发展的q-BPD与乳腺癌风险的关联,例如放射科医生通过病例对照研究和统计分析对BI-RADS密度类别和FFDM交互PD的估计,同时考虑其他混杂风险因素。当完全开发时,自动q-BPD可以作为常规乳腺癌筛查的一部分。它不仅对个体患者的乳腺癌风险预测有用,
还用于监测由于治疗或其他因素而随时间推移的风险消退或进展。新的风险预测工具预计将在不同风险水平的女性的个性化乳腺癌筛查中发挥关键作用,从而降低医疗保健成本,同时使高风险女性受益。该项目的成功将为未来大规模临床试验奠定基础,以解决所提出的q-BPD用于乳腺癌风险预测的局限性和研究临床效用。关键词:定量乳腺实质分析,基于图像的生物标志物,乳腺癌风险预测,全视野数字乳腺X线摄影(FFDM)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Wei其他文献
Jun Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Wei', 18)}}的其他基金
Quantitative Parenchyma Descriptor as an Imaging Biomarker of Breast Cancer Risk
定量实质描述符作为乳腺癌风险的影像生物标志物
- 批准号:
9750643 - 财政年份:2015
- 资助金额:
$ 37.78万 - 项目类别:
Quantitative Parenchyma Descriptor as an Imaging Biomarker of Breast Cancer Risk
定量实质描述符作为乳腺癌风险的影像生物标志物
- 批准号:
9321215 - 财政年份:2015
- 资助金额:
$ 37.78万 - 项目类别:
Synthetic Oleananes: Innovative Treatment of Fibrosis
合成齐墩果烷:纤维化的创新治疗方法
- 批准号:
8774095 - 财政年份:2014
- 资助金额:
$ 37.78万 - 项目类别:
Synthetic Oleananes: Innovative Treatment of Fibrosis
合成齐墩果烷:纤维化的创新治疗方法
- 批准号:
8917095 - 财政年份:2014
- 资助金额:
$ 37.78万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.78万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.78万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.78万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.78万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.78万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.78万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.78万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.78万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.78万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.78万 - 项目类别:
Research Grant