Controlling Stem Cell Fate through Computational Modeling
通过计算模型控制干细胞的命运
基本信息
- 批准号:9166324
- 负责人:
- 金额:$ 228万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:BacteriaCell TherapyCellsClinicalComplexComputer SimulationDataDevelopmentDoseDrug Delivery SystemsEventGenetic TranscriptionGoalsHealthHumanInterstitial Lung DiseasesLaboratoriesLeadLungLung diseasesMeasurementMicroscopyModelingMolecularMonitorPatientsPriceProceduresProtocols documentationPulmonary EmphysemaPulmonary FibrosisRegenerative MedicineRegulatory PathwayResolutionSeriesSignal TransductionSportsStem cellsTimeTissuesTrainingWorkcancer cellcell typedesignessayshuman stem cellsimprovedinduced pluripotent stem celllive cell microscopymodel buildingnovelpredictive modelingpredictive toolsresearch studystem cell fatestem cell therapytime usevirtual
项目摘要
ABSTRACT
Since the discovery of induced pluripotent stem cells, a major goal for regenerative medicine has been to
replace damaged or diseased tissues with patient-derived cells. In principle, it should be possible to generate
functional tissues for clinical use through directed differentiation protocols that specifically alter the fate of
pluripotent cells. Unfortunately, there are many challenges associated with directed differentiation. First, we do
not fully understand all of the signaling mechanisms that participate in developmental regulatory pathways. We
therefore cannot always identify the correct combination of molecular factors that will recapitulate these signals
in a laboratory setting. Even if the required factors are known, it is unclear what doses, timing, or combinations
of factors will produce an efficient differentiation. Most protocols are developed by trial-and-error; take years to
optimize; and lead to incomplete, inefficient, or heterogeneous mixtures of the desired cell types. Clearly, there
is a critical need for improving differentiation procedures if we expect to produce realistic cell-based therapies.
In this essay, I propose a novel solution for controlling the fate of human stem cells. The approach, which we
have pioneered in our lab, works by allowing a computational model to design the differentiation protocol. To
build the model, we use time-lapse microscopy to monitor the expression of key developmental markers over
the time course of differentiation. These data provide a mechanistic description of cellular fate decisions at
single-cell resolution. To train the model, we then apply a series of systematic perturbations to differentiating
cells, monitor the cells by live-cell microscopy, and integrate these new measurements into the working model.
Finally, we use the model as a predictive tool by performing thousands of virtual experiments to identify a set of
perturbations that are predicted to alter stem cell fate in a prescribed way. Model predictions are validated
through single-cell transcription profiling, and these data are used to iteratively refine the model’s predictive
power. As proof of principle, we will use this approach to produce precise combinations of human lung
progenitor cells that could be used to treat pulmonary diseases such as pulmonary fibrosis, emphysema, or
interstitial lung disease. In the near term, our approach will enable us to manipulate pluripotent cells to acquire
a precise combination of differentiated cell fates—overcoming a major hurdle in stem cell therapy. In the long
term, this approach could be used more generally to control the fate of other cell types including bacteria or
cancer cells, and may help to design improved drug delivery protocols.
摘要
自从发现诱导多能干细胞以来,再生医学的一个主要目标是
用患者来源的细胞替换受损或患病的组织。原则上,应该可以生成
通过定向分化方案用于临床用途的功能组织,
多能细胞不幸的是,有许多与定向分化相关的挑战。首先,我们
没有完全理解参与发育调节途径的所有信号传导机制。我们
因此,并不能总是识别出能够概括这些信号的分子因素的正确组合
in a laboratory实验setting设置.即使所需的因素是已知的,也不清楚什么剂量、时间或组合
将产生一个有效的差异化。大多数协议都是通过试错法开发的;需要数年时间才能实现
优化;并导致所需细胞类型的不完全、低效或异质混合物。显然
如果我们期望产生现实的基于细胞的疗法,那么改进分化程序是至关重要的。
在这篇文章中,我提出了一个新的解决方案来控制人类干细胞的命运。方法,我们
在我们的实验室里开创性的,通过允许一个计算模型来设计分化协议。到
建立模型,我们使用延时显微镜来监测关键发育标记物的表达,
分化的时间进程。这些数据提供了细胞命运决定的机制描述,
单细胞分辨率。为了训练模型,我们应用一系列系统扰动来区分
细胞,通过活细胞显微镜监测细胞,并将这些新的测量结果整合到工作模型中。
最后,我们使用该模型作为预测工具,通过执行数千个虚拟实验来识别一组
预测以规定方式改变干细胞命运的扰动。模型预测得到验证
通过单细胞转录谱分析,这些数据被用来迭代地完善模型的预测
动力.作为原理的证明,我们将使用这种方法来生产人类肺的精确组合,
可以用于治疗肺部疾病如肺纤维化、肺气肿或
间质性肺病。在短期内,我们的方法将使我们能够操纵多能细胞来获得
分化细胞命运的精确组合-克服干细胞治疗中的主要障碍。从长远
长期而言,这种方法可以更普遍地用于控制其他细胞类型的命运,包括细菌或
癌细胞,并可能有助于设计改进的药物输送方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Purvis其他文献
Jeremy Purvis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremy Purvis', 18)}}的其他基金
Computational Models of the Human Cell Cycle to Reveal Disease Mechanism and Inform Treatment
人类细胞周期的计算模型揭示疾病机制并为治疗提供信息
- 批准号:
10033514 - 财政年份:2020
- 资助金额:
$ 228万 - 项目类别:
Computational Models of the Human Cell Cycle to Reveal Disease Mechanism and Inform Treatment
人类细胞周期的计算模型揭示疾病机制并为治疗提供信息
- 批准号:
10261500 - 财政年份:2020
- 资助金额:
$ 228万 - 项目类别:
Administrative Equipment Supplement for Computational Models of the Human Cell Cycle to Reveal Disease Mechanism and Inform Treatment
人类细胞周期计算模型的管理设备补充,以揭示疾病机制并为治疗提供信息
- 批准号:
10582092 - 财政年份:2020
- 资助金额:
$ 228万 - 项目类别:
Computational Models of the Human Cell Cycle to Reveal Disease Mechanism and Inform Treatment
人类细胞周期的计算模型揭示疾病机制并为治疗提供信息
- 批准号:
10458019 - 财政年份:2020
- 资助金额:
$ 228万 - 项目类别:
Computational Models of the Human Cell Cycle to Reveal Disease Mechanism and Inform Treatment
人类细胞周期的计算模型揭示疾病机制并为治疗提供信息
- 批准号:
10670944 - 财政年份:2020
- 资助金额:
$ 228万 - 项目类别:
UG Support Administrative Supplement: Computational Models of the Human Cell Cycle to Reveal Disease Mechanism and Inform Treatment
UG支持行政补充:人类细胞周期的计算模型揭示疾病机制并为治疗提供信息
- 批准号:
10810424 - 财政年份:2020
- 资助金额:
$ 228万 - 项目类别:
Dynamics of cellular senescence in single human cells
单个人类细胞的细胞衰老动力学
- 批准号:
8724088 - 财政年份:2012
- 资助金额:
$ 228万 - 项目类别:
Dynamics of cellular senescence in single human cells
单个人类细胞的细胞衰老动力学
- 批准号:
8732676 - 财政年份:2012
- 资助金额:
$ 228万 - 项目类别:
Dynamics of cellular senescence in single human cells Admin Supplement
人类单个细胞的细胞衰老动力学管理补充
- 批准号:
8841972 - 财政年份:2012
- 资助金额:
$ 228万 - 项目类别:
Dynamics of cellular senescence in single human cells
单个人类细胞的细胞衰老动力学
- 批准号:
8353599 - 财政年份:2012
- 资助金额:
$ 228万 - 项目类别:
相似海外基金
Establishment of cell therapy using tissue stem cells derived from perifascial areolar tissue (PAT)
使用来自筋膜周围乳晕组织(PAT)的组织干细胞建立细胞疗法
- 批准号:
23K09089 - 财政年份:2023
- 资助金额:
$ 228万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of CAR-NK cell therapy using T/NK progenitor cells
利用T/NK祖细胞建立CAR-NK细胞疗法
- 批准号:
23K15308 - 财政年份:2023
- 资助金额:
$ 228万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Engineering T cells to overcome inhibitory receptor signals that limit the efficacy of adoptive cell therapy against ovarian cancer
改造 T 细胞以克服抑制性受体信号,这些信号限制了过继性细胞疗法对卵巢癌的疗效
- 批准号:
10526155 - 财政年份:2023
- 资助金额:
$ 228万 - 项目类别:
Cell Therapy Program with Scale-up cGMP Manufacturing of Human Corneal Stromal Stem Cells
细胞治疗计划,扩大人类角膜基质干细胞的 cGMP 生产
- 批准号:
10720562 - 财政年份:2023
- 资助金额:
$ 228万 - 项目类别:
Democratizing CAR T cell therapy by in situ programming of virus-specific T cells
通过病毒特异性 T 细胞的原位编程使 CAR T 细胞疗法大众化
- 批准号:
10739646 - 财政年份:2023
- 资助金额:
$ 228万 - 项目类别:
Allogeneic DNT cell therapy synergizes with T cells to promote anti-leukemic activities while suppressing GvHD
同种异体 DNT 细胞疗法与 T 细胞协同作用,促进抗白血病活性,同时抑制 GvHD
- 批准号:
493332 - 财政年份:2023
- 资助金额:
$ 228万 - 项目类别:
Development of gene cell therapy using mesenchymal stromal cells for neuroblastoma
开发利用间充质基质细胞治疗神经母细胞瘤的基因细胞疗法
- 批准号:
23H02879 - 财政年份:2023
- 资助金额:
$ 228万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: Stem Cells, Cell Therapy and Bioengineering in Lung Biology and Diseases 2023
会议:肺生物学和疾病中的干细胞、细胞治疗和生物工程 2023
- 批准号:
2327935 - 财政年份:2023
- 资助金额:
$ 228万 - 项目类别:
Standard Grant
Next-generation T cell therapy: SMARTER T cells for enhanced and durable anti-tumor immunity
下一代 T 细胞疗法:SMARTER T 细胞可增强且持久的抗肿瘤免疫力
- 批准号:
10644940 - 财政年份:2023
- 资助金额:
$ 228万 - 项目类别:
Targeting Glioblastoma Cells and Tumor Microenvironment with CAR-T Cell Therapy
利用 CAR-T 细胞疗法靶向胶质母细胞瘤细胞和肿瘤微环境
- 批准号:
10888586 - 财政年份:2023
- 资助金额:
$ 228万 - 项目类别: